摘要
给出了含参变量Dirichlet积分In,m(s)的定义。数学分析中的许多含参变量积分都是In,m(s)的特例。利用三角降次公式及解析函数的理论解决了含参变量Dirichlet积分的公式解问题,由此推出第一类Dirichlet积分与第二类Dirichlet积分的公式解。通过计算,解决了In,m(s)的表示问题。
The definition of Dirichlet’s integral I_(n,m)(s) with one variable has been given.Many integrals with variables in mathematic analysis are special cases of I_(n,m)(s). Using trigonometric power reduction formulas and analytic function theory, the Dirichlet’s integral I_(n,m)(s) has been solved,with name of formula solutions.From that, the first kind and second kind Dirichlet’s integrals have been presented by computation of I_(n,m)(s).
出处
《南京工业大学学报(自然科学版)》
CAS
2005年第2期47-50,共4页
Journal of Nanjing Tech University(Natural Science Edition)
关键词
变量
DIRICHLET积分
计算方法
公式解
解析函数
Dirichlet’s integral with one variable
trigonometric power reduction formula
formula solutions
the first kind and the second kind Dirichlet’s integrals