期刊文献+

多传感器分布式信息融合Wiener信号滤波器

Multisensor Distributed Information Fusion Wiener Filter
下载PDF
导出
摘要 应用Kalman滤波方法,对于带白色和有色观测噪声单通道ARMA信号,基于Riccati方程,在线性最小方差按标量加权的最优信息融合准则下,提出了多传感器分布式信息融合Wiener信号滤波器。提出了计算局部滤波误差间的互协方差的Lyapunov方程,可用于计算最优加权系数。同单传感器情形相比,可提高滤波精度。一个三传感器信息融合Wiener跟踪滤波器的仿真例子说明了其有效性。 Using Kalman filtering method, based on Riccati equation, under the linear minimum variance optimal information fusion criterions weighted by scalars, for the single channel ARMA signals with white and colored measurement noises, the multisensor distributed information fusion Wiener filters is presented. The Lyapunov equations of computing local filtering error covariances are presented, which are applied to obtain the optimal weighting coefficients. Compared with the single sensor case, it can improve the filtering accuracy. A simulation of three-sensors information fused tracking filter shows its effectiveness.
出处 《科学技术与工程》 2005年第9期539-542,共4页 Science Technology and Engineering
基金 国家自然科学基金(60374026)黑龙江大学自动控制重点实验室基金资助
关键词 按标量加权的线性最小方差信息融合规则 多传感器 信息融合Wiener信号滤波器 LYAPUNOV方程 linear minimum variance optimal information fusion rule weighted by scalars multisensor information fusion Wiener signal filter Lyapunov equation
  • 相关文献

参考文献2

二级参考文献7

  • 1邓自立 祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
  • 2Carlson N A.Federated Square Root Filter for Decentralized Parallel Processes[J].IEEE Trans.on Aerospace and Electronic Systems,1990,AES-26 (3):517-525
  • 3Carlson N A.Federated Kalman filter simulation results[J].Navigation,1994,41(3):297-321
  • 4Bar-Shalom,Y.On the track-to-track correlation problem[J].IEEE Trans.on Automatic Control,1981,AC-26(2):571-572
  • 5Hashmipour H R,Roy S,Laub A J.Decentralized structures for parallel Kalman Filtering[J].IEEE Trans.on Automatic Control,1988,33 (1),88-93
  • 6孙书利,崔平远.两传感器最优信息融合Kalman滤波器及其在跟踪系统中的应用[J].宇航学报,2003,24(2):206-209. 被引量:14
  • 7孙书利,崔平远.多传感器标量加权最优信息融合稳态Kalman滤波器[J].控制与决策,2004,19(2):208-211. 被引量:52

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部