期刊文献+

基于长边缘相关和一致性检测的多传感器图像配准方法 被引量:3

A Fast Method to Remote Image Registration
下载PDF
导出
摘要 遥感图像的配准特别是当波段相距较远的图像间配准时,由于其相关性小,直接提取的边缘特征中不一致特征所占比例很大,此时直接应用partialHausdorff距离等方法配准往往失效。本文提出了一种基于长边缘相关的图像配准方法,首先对长边缘进行相关计算,然后在相关长边缘的基础上对其余的边缘进行一致性检测。极大提高了边缘特征的一致性。长边缘相关是在比较HuiLi的相关方法基础上提出的改进Freeman链码相关系数方法。一致性特征检测方法是基于V.Randrianarisoa的检测方法并对之进行了改进。最后对一致边缘的相关部分使用最小二乘法得到了配准参数。仿真实验表明本方法对长边缘丰富的图像有很好的配准结果。并且本方法具有配准速度快的优点。 Some registration approaches can fail when percentage of outliers is too high in remote images. We introduce, in this paper, a new approach to improve the robustness of feature extration for automatic image registration. This method is based on long-edge correlation and consistency check. Long-edge correlation extracts a long edge as reference curve in order to increase the percentage of common feature in the edge maps, and consistent check reduce the number of outliers drastically. The proposed method based on comparison of HuiLi's correlation is a modified chain code correlation coefficient method. In addition, get more consistent-edge by improvement of Randrianarisoa method. The simulation experiments show the robust registration results of the method for images rich in long-edge. Another advantage of the method is rapid computational speed.
出处 《信号处理》 CSCD 北大核心 2005年第2期115-119,114,共6页 Journal of Signal Processing
  • 相关文献

参考文献6

  • 1Leial M.G. Registration Techniques for multisensor remotely sensed imagery. Photogrammeric Engineering & Remote Sensing. 1996.
  • 2Hui Li A Contour_based approach to multisensor image registration. IEEE transactions on image processing 1995.
  • 3Xiangjie Yang Adaptive hill climbing and iterative closest point algorithm for multisensor image registration with partial Hausdorff distance. SPIE, 99-109, 2000.
  • 4V Randrianarisoa Robust automatic ground image feature extraction for multisensor image registration. SPIE,129-139, 2001.
  • 5Heath M D A robust visual method for assessing therelative performance of edge-detection algorithms, IEEE 1997.
  • 6Rafael C.Gonzalez, Digital Image Processing, Prentic Hall 2002.

同被引文献30

  • 1L. Brown. A survey of image registration techniques [ J ]. ACM Computer Surveys, 24 (4) : 325 -376,1992.
  • 2B. Zitova, J. Flusser. Image registration methods: a survey [ J ]. Image Vision Computing,21 ( 11 ) :977-1000,2003.
  • 3A. Goshtasby. 2-D and 3-D image registration for medical, remote sensing, and industrial applications [ M ]. 1^st Edition, Dayton : Wiley-Interscience ,63-70.2005.
  • 4Barnea D I, Silverman H F. A class of algorithms for fast digital registration [ J ]. IEEE Trans. Computer, (21 ) : 179-186,1972.
  • 5J. Flusser and T. Suk. A moment-based approach to registration of images with affine geometric distortion [ J]. IEEE Trans. on Geoscience and Remote Sensing, 1994,32 ( 2 ) : 382-387.
  • 6X. Dai and S. Horram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments [J]. IEEE Trans. On Geoscience and Remote Sensing, 1999,37 (5) :2351-2362.
  • 7J. Flusser. Object matching by means of matching likelihood coefficients [ J ]. Pattern Recognition Letters, 16 (9) : 893-900,1995.
  • 8D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis[J].IEEE Trans. Pattern Anal. Mach. Intell. ,24(5 ) :603-619,2002.
  • 9Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376.
  • 10Fonseca L M G.Registration techniques for multisensor remotely sensed imagery[J].Photogrammetric Engineering & Remote Sensing,1996,62(9):1049-1056.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部