期刊文献+

保持图像细节的局部自适应去噪滤波器新方法 被引量:11

A Local Adaptive Denoising Filter With Keeping Color Images Detail
下载PDF
导出
摘要 去噪算法在现代图像处理应用中占有极其重要的地位。然而图像去噪的过程总是伴随着图像的模糊。本文提出了一种对彩色图像细节保持较好的局部自适应的去噪算法--基于个数判断噪声的前提下结合线性插值、非线性插值(这里主要指中值滤波)滤波对噪声图像进行处理,得到较理想的效果。和领域平均法、倒数梯度加权法、纯线性插值法、纯中值滤波法等相比较,其效果改善明显。 Denoising is very important in image processing. Unfortunately denoising will blur the original image, founding a way to keep the details of a noisy image is necessary. We shown a new adaptive algorithm of denoising which has a better performance on keeping image's details-counting the difference of a window combining with the linear interpolation or nonlinear sort filter. We get a better result comparing with mean filter 、 reciprocal gradient filter、linear filter and median filter.
出处 《信号处理》 CSCD 北大核心 2005年第2期191-194,共4页 Journal of Signal Processing
关键词 图像细节 自适应 局部 滤波器 去噪算法 非线性插值 线性插值法 中值滤波法 图像处理 图像去噪 个数判断 噪声图像 行处理 平均法 加权法 color image's detail, adaptive filter, linear interpolation, median filter, noise analyzing based on counting the difference of a window
  • 相关文献

参考文献9

  • 1蒋刚毅,郁梅,郁伯康.自适应彩色图像滤波新方法[J].科学通报,1999,44(18):1937-1942. 被引量:19
  • 2Astola J, Haavisto E Neuvo Y.Vector median filter.Processings of the IEEE, 1990, 78:678-689.
  • 3D.L.Donoho. De-noising by soft thresholdiag. IEEE Trans.lfn.Th., 41: 613-627, 1995.
  • 4S.Voloshynovskiy, O.Koval, and T.Pun, Wavelet-base image denoising using non-stationary stochastic geome-trical image priors. In IS T/SPIEs Annual Symposium, Electronic lmageing 2003: Image and Video Communica-fions and Processing V, (San Clard.California USA). 20-24 January 2003.
  • 5王欣.基于双Haar小波的软门限去噪[J].信号处理,2003,19(5):465-468. 被引量:3
  • 6肖亮,吴慧中,韦志辉,汤淑春.基于总体变差模型的数字滤波器设计及其性能研究[J].信号处理,2003,19(3):247-251. 被引量:9
  • 7RafaelC Gonzalez RichardEWbods.《数字图像处理》(第二版)[M].电子工业出版社,2003.P93-97.
  • 8KennethR Casdeman著.《数字圈像处理》[M].电子工业出版社,2002.P204-206.
  • 9傅德胜 寿益禾.《图形图像处理学》[M].东南大学出版社,.P188-190P192-204.

二级参考文献12

  • 1Ping liang,Y F Wang. Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection. In the Proceedings of 6th International Conference on Computer Vision,1998.193-220.
  • 2Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removel algorithms. Physica D,1992, 60:259-268. 3.
  • 3Tony chan, Jianhong Shan, Mathematical models for local non-texture inpainting,. SIAM. Applied Mathematical,2001, 62(3): 1019-1043.
  • 4Cobson D, Vogel C. Convergence of an iterative method for total variation denoising. SIAM Journal of Numerical Analysis, 1997, 34(5): 1779-1791.
  • 5Chambolle A, Lions P.Image recovery via total variational minimization and related problem. Numerical Mathmatica, 1997,76:167-188.
  • 6Tony Echan. The dgital TV filter and nonlinear denoising.IEEE Transaction on Image Processing, 2001, 10(2):231-241.
  • 7Y.Meyer. Oscillating patterns in image processing and non-linear evolutions. University Lecture Series, 22,AIMS, 2002.
  • 8S Mallat, and S Zhong. "Characterization of signals for multiscal edges," IEEE Trans, Pattern and Machine Intelligence, vol.PAMI-14, pp.710-732, July 1992.
  • 9D Donoho. "De-noising by soft thresholding," IEEE Trans, Information Theory, vol.IT-41, pp.613-627, May1995.
  • 10N Weyrich and G T Warhola. "Wavelet shrinkage generalized cross validation for image denoising," IEEE Trans, Image Processing, vol.IP-7, pp.82-90, Jan. 1998.

共引文献26

同被引文献64

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部