期刊文献+

纳米复合聚合物电解质的新型制备方法及其性能 被引量:7

NOVEL PREPARATION AND PROPERTIES OF NANOCOMPOSITE POLYMER ELECTROLYTES
下载PDF
导出
摘要 以含有纳米SiO2 的聚乙二醇二丙烯酸酯(PEGDA)为单体, 加入液态电解质, 通过紫外光辐射固化制备了凝胶态纳米复合聚合物电解质(NCPE)。含有纳米SiO2 的PEGDA单体是以水性硅溶胶为原料, 通过一个溶剂交换过程制备的, 与此同时纳米SiO2 的表面通过加入甲基丙烯酰氧丙基三甲氧基硅烷(MAPTMS)进行改性, 使其表面具有可以参与光固化的丙烯酸酯基团。与用不含纳米粒子的PEGDA单体制备的凝胶态聚合物电解质相比, 纳米复合聚合物电解质的电导率更高, 尤其是电化学稳定性和界面稳定性有明显提高。 The gel nanocomposite polymer electrolyte (NCPE) was prepared by UV radiation curing based on poly(ethylene glycol) diacrylate (PEGDA) monomer containing nanosize SiO2 in the presence of liquid electrolyte. The PEGDA monomer containing nanosize SiO2 was synthesized using aqueous colloidal silica as one of starting materials through a solvent exchange process and the partial surface groups of SiO2 were modified into acrylic group during the procedure by employing methacryloxypropyl trimethoxysilane (MAPTMS), which made the nanosize SiO2 having the UV-curable acrylate groups. Compared with the gel polymer electrolyte based on PEGDA without nanosize filler, the ionic conductivity is higher and the improvements in the electrochemical stability and interfacial stability are noticeable for the gel NCPE.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2005年第2期16-20,共5页 Acta Materiae Compositae Sinica
基金 上海市科学技术委员会项目(02dz11001)
关键词 纳米复合聚合物电解质 纳米SIO2 聚乙二醇二丙烯酸酯(PEGDA) 紫外光辐射固化 水性硅溶胶 凝胶态聚合物电解质 Composite materials Curing Electric conductivity Gels Monomers Nanostructured materials Polyethylene glycols Silica Ultraviolet radiation
  • 相关文献

参考文献11

  • 1Fenton D E, Parker J M, Wright P V. Complexes of alkaline metal ions with poly(ethylene oxide) [J]. Polymer, 1973, 14(3): 589-592.
  • 2Weston J E, Steele B C. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes [J]. Solid State Ionics, 1982, 7(1): 75-79.
  • 3Krawiec W, Scanlon L G Jr, Fellner J P, et al. Polymer nanocomposites: A new strategy for synthesizing solid electrolytes for rechargeable lithium batteries [J]. J Power Sources, 1995, 54(2): 310-315.
  • 4Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries [J]. Nature, 1998, 394(30): 456-459.
  • 5Song M K, Cho J Y, Cho B W, et al. Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries[J]. J Power Sources, 2002, 110(1): 209-215.
  • 6Matsuda Y, Fukushima T, Katoh Y, et al. Characteristics of gel alkylene oxide polymer electrolytes containing γ-butyrolactone [J]. J Power Sources, 2003, 119-121(1): 473-477.
  • 7Kang Y, Kim H J, Kim E, et al. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries [J]. J Power Sources, 2001, 92(1-2): 255-259.
  • 8Kim H S, Shin J H, Moon S I, et al. Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries [J]. J Power Sources, 2003, 119-121(1): 482-486.
  • 9Polo Fonseca C, Neves S. Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide) [J]. J Power Sources, 2002, 104(1): 85-89.
  • 10Walls H J, Zhou J, Yerian J A, et al. Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry [J]. J Power Sources, 2000, 89(2):156-162.

同被引文献106

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部