期刊文献+

一类李普希茨广义系统观测器的设计 被引量:4

Observer for a Class of Descriptor System with Lipschitz Constraint
下载PDF
导出
摘要 文章讨论了一类具有李普希茨约束条件的时间连续广义系统观测器的设计问题,其中李普希茨约束为时间、系统状态以及控制输入的函数。通过线性矩阵不等式,给出一种新的易于计算的构造全维观测器的方法。 This paper deals with an observer design for a class of continuous-time descriptor system with Lipschitz constraint.The constraint is a function of time,systemstate and control input.A newand simple approach is developed to present full-orˉder observer.The sufficient condition is equivalent to a linear matrixinequality.An illustrative example is presented to showthe effectiveness of the proposed approach.
出处 《南通大学学报(自然科学版)》 CAS 2005年第1期45-48,共4页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金(60474076) 江苏省自然科学基金(BK2003034) 江苏省教育厅高校自然科学基金(04KJB510105)
关键词 观测器 线性矩阵不等式 连续广义系统 设计问题 约束条件 控制输入 系统状态 时间 数值 仿真 observer continuous-time descriptor system Lipschitz condition linear matrix inequality
  • 相关文献

参考文献13

  • 1[1]Boutayeb M ,Darouach M.Observers design for nonlinear descriptor systems[A].Proceedings of the 34th IEEE Conference on Decision and Control[C].1995,3:2369- 2374.
  • 2[2]Dai L. Singular Control Systems[M]. Berlin, Germany: Springer- Verlag, 1989.
  • 3[3]Darouach M, Boutayeb M.Design of observers for descriptor systems[J].IEEE Trans Automat Contr,1995,40:1323- 1327.
  • 4[4]Darouach M, Zasadzinski M, Hayar M.Reduced- order observer design for descriptor systems with unknown inputs[J]. IEEE Trans Automat Contr,1996,41:1068- 1072.
  • 5[5]Hou M, Muller P C.Observer design for descriptor systems[J]. IEEE Trans Automat Contr,1999,44:164- 169.
  • 6[6]Koenig D,Mammar S.Design of proportional- integral observer for unknown input descriptor systems[J].IEEE Trans Automat Contr,2002,47:2057- 2062.
  • 7[7]Lu Guoping, Ho Daniel.Robust H∞ observer for nonlinear discrete systems with time- delay and parameter uncertainties [J].IEE Proceedings - Control Theory and Applications, 2004,151:439- 444.
  • 8[8]Lu Guoping, Ho Daniel.Robust H∞ observer design for a class of Lipschitz discrete- time systems[A].Proc of International Conference on Control Applications[C].Taipei, Taiwan,2004: 1733- 1738.
  • 9[9]Rajamani R.Observers for Lipschitz nonlinear systems[J]. IEEE Trans Automat Contr,1998,43:391- 401.
  • 10[10]Shields D N.Observer design and detection for nonlinear descriptor systems[J].International Journal of Control, 1997, 67(2):153- 168.

同被引文献31

  • 1张卫,鞠培军.含未知输入的Lipschitz非线性广义系统的观测器设计[J].山东大学学报(理学版),2006,41(2):85-88. 被引量:6
  • 2贺乃宝,姜长生.基于Lyapunov方法的非线性系统自适应观测器设计[J].南京航空航天大学学报,2006,38(3):267-270. 被引量:12
  • 3Kokotovic P V, Reilly J O, Khalil H K. Singular perturbation methods in control: analysisand design [M]. Orlando, F. L.: Academic Press, 1986.
  • 4Liu H P, Sun F C. Stability analysis and synthesis of fuzzy singularly perturbed systems [ J ]. IEEE Transactions on Fuzzy Systems, 2005, 13(2) :273-284.
  • 5Fridman E. Robust sampled-data control of linear singularly perturbed systems[J]. IEEETransactions on Automatic Control, 2006, 51 (3) :470-475.
  • 6Shao Z. Robust stability of singularly perturbed systems with state delays[J]. IEE Proe. Control Theory, 2003, 150(1 ) : 2-6.
  • 7Du N H, Linh V H. Implicit-system approach to the robust stability for a class of singularlyperturbed linear systems[J]. Systems & Control Letters, 2005, 54(1 ) :33-41.
  • 8Shao Z H. Stability bounds of singularly perturbed delay systems[J]. IEE Proc.Control Theory, 2004, 151 (5): 585-588.
  • 9Li T H S, Lin Y J. Stabilization of singularly perturbed fuzzy systems[J]. IEEE Transactions onFuzzy Systems, 2004, 12(5): 579-595.
  • 10Lu G P, Feng G, Jiang Z P. Saturated feedback stabilization of discrete-time descriptorbilinear systems [J]. IEEE Transactions on Automatic Control, 2007, 52(9) : 1700-1704.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部