期刊文献+

一种基于交互投影原理的快速自适应横向传播建模算法

Fast Adaptive Trans-Propagation Least Mean Square Algorithm Based on Principle of Alternative Projection
下载PDF
导出
摘要 针对最小均方建模算法用于长记忆有限脉冲响应滤波器模型时收敛速度慢的问题,提出了基于交互投影原理的横向传播建模算法(简称为TPLMS算法).该算法将滤波器按质因数分解为多组滤波器组合,从最短的子滤波器分组开始迭代,逐步过渡到原滤波器,在每一时刻,采用最小均方算法顺序求解分组内各子滤波器的权系数.在迭代过程中,由于滤波器的长度缩短,从而可采用更大的步长,使权系数以更快的速度收敛.随着子滤波器长度的逐步增加,可以逐步减小迭代步长,从而得到较低的失调误差.仿真结果表明,TPLMS算法的收敛速度优于传统的最小均方算法和变步长最小均方算法.该算法收敛速度快,特别适用于长记忆有限脉冲响应滤波器模型的自适应建模. A new fast adaptive algorithm, the TPLMS (Trans-Propagation Least Mean Square algorithm), was proposed for long finite impulse response (FIR) filters. Based on the iterative of alternative projection of two convex sets, a long FIR filter is decomposed into several sets of short sub-filters, and the iteration process is performed repeatedly from the set with the shortest sub-filters to the original filter. At each moment, the least mean square algorithm is performed sequentially in every set of sub-filters. Since the length of sub-filters is shorter than the original filter, the convergence rate is higher than the standard least mean square algorithm even by using a larger permissible iteration step-size. With the increase of the length of sub-filters step by step, the iteration step-size is reduced accordingly, which leads to a lower misadjust-ment. The simulation results indicate that the proposed TPLMS algorithm can remarkably speed up convergence rate, and is particularly suitable for long FIR filters.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第5期503-506,510,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(10276032)
关键词 最小均方算法 交互投影 长记忆有限脉冲响应滤波器 横向传播最小均方算法 Convergence of numerical methods FIR filters Least squares approximations Mathematical models Simulation
  • 相关文献

参考文献8

  • 1童恒庆.线性模型的降维计算与病态分离[J].数值计算与计算机应用,1997,18(4):241-242. 被引量:2
  • 2Woo T K. Fast hierarchical least mean square algorithm [J]. IEEE Signal Processing Letters, 2001, 8 (11):289-291.
  • 3Vitor H N. Analysis of the hierarchical LMS algorithm [J]. IEEE Signal Processing Letters, 2003, 10 (3): 78-81.
  • 4Malcolm D M. Performance of the hierarchical LMS algorithm [J]. IEEE Signal Processing Letters, 2002, 9(12): 436-437.
  • 5Vitor H N. Improving the initial convergence of adaptive filters: variable-length LMS algorithms [A]. Skodras A N, Constantinides A G. 2002 14th Int Conf on Digital Signal Processing Proceedings [C]. Piscataway, USA: IEEE, Inc, 2002. 667-670.
  • 6Nascimento V H, Sayed A H. On the learning mechanism of adaptive filters [J]. IEEE Trans on Signal Processing, 2000, 48(6): 1 609-1 625.
  • 7Solo V, Kong X. Adaptive signal processing algorithms [M]. Englewood Cliffs, USA: Prentice-Hall, 1995.
  • 8Won Y K, Park R H, Park J H, et al. Variable LMS algorithms using the time constant concept [J]. IEEE Trans on Consumer Electronics, 1994, 40 (3): 655-661.

二级参考文献5

  • 1童恒庆,应用数学学报,1995年,3卷,454页
  • 2童恒庆,Mathematical and Computer Modelling,1994年,20卷,7期,13页
  • 3童恒庆,Mathematical and Computer Modelling,1994年,20卷,9期,45页
  • 4童恒庆,Mathematical and Computer Modelling,1993年,18卷,8期,55页
  • 5王松桂,线性模型的理论及其应用,1987年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部