期刊文献+

一种基于Bayesian准则和MRF模型的SAR图像滤波方法 被引量:2

An Algorithm for SAR Image Filtering Based on Bayesian Principle and MRF Modeling
下载PDF
导出
摘要 提出了一种新的斑点噪声的滤波方法,该方法基于小波分解的框架,采用小波域隐MRF模型,计算图像中表征像素纹理特征的隐状态参数的后验概率,以此后验概率作为权重因子对传统GammaMAP滤波算法进行改进。该算法被用于模拟SAR图像和真实ERS 1图像的Speckle抑制。试验结果表明,与传统Gam maMAP算法相比,本文提出的方法能更好地抑制Speckle,并保持图像细节。 Based on wavelet transform, a new Speckle reduction method is presented in this paper, and using wavelet-domain hidden Markov models to calculate posterior probability of state parameter, which describes the texture information of images. Then the posterior probability is used as filtering weighting factors in GammaMAP algorithm to reduce Speckle. The algorithm proposed was applied to both simulative images and ERS-1 SAR images. Compared with the original GammaMAP , the results indicate that this new approach can suppress Speckle and preserve more details as well.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2005年第5期464-467,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40376051) 湖北省自然科学基金资助项目(2002AB0034)
关键词 合成孔径雷达 Speckle抑制 Bayesian准则 MRF模型 synthetic aperture radar Speckle reduction Bayesian principle Markov random field
  • 相关文献

参考文献8

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2Xie H, Pierce L E, Ulaby F T. SAR Speckle Reduc- tion Using Wavelet Denoising and Markov Random Field Modeling. IEEE Trans. on Geoscience and Remote Sensing ,2002,40(10):2 196~2 212
  • 3Ulaby F, Dobson M C. Handbook of Radar Scattering Statistics for Terrain . Norwood, MA:Artech House, 1989
  • 4Chipman H, Kolaczyk E, McCulloch R. Adaptive Bayesian Wavelet Shrinkage. J. Amer. Statist. Assoc. 1997. 1 413~1 421
  • 5Cheng X Z. A Note on the Expectation-Maximization (EM)Algorithm. http://sifaka.cs. uiuc.edu/course/397cxz03f/em-note.pdf, 2003
  • 6Li S Z. Markov Random Field Modeling in Computer Vision. Tokyo, Japan: Springer-Verlag , 1995
  • 7Mascarenhas N D A, Frery A C. SAR Image Filtering with the ICM Algorithm. http://ieeexplore.ieee.org/iel2/3183/9018/00399687.pdf, 1994
  • 8Glen A G, Leemis L M, Rbarr D. Order Statistics in Goodness-of-Fit Testing. IEEE Trans. on Reliability, 2001, 50(2):209~213

共引文献150

同被引文献20

  • 1贺占庄,徐炜,黄士坦.SAR图像滤波的小波域多尺度HMM方法[J].武汉大学学报(工学版),2005,38(3):126-130. 被引量:2
  • 2徐新,王雁,陈嘉宇,孙洪.基于小波系数统计特征的SAR图像恢复[J].武汉大学学报(信息科学版),2006,31(10):855-857. 被引量:3
  • 3Frost V S, Stiles J A. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1982, 4(2) : 157-166.
  • 4Lee J S. Digital Image Enhancement and Noise Filtering by Useof Local Statistics[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1980, 2(2): 165-168.
  • 5Kuan F T, Sawchuk A A. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1985, 7(2):165-177.
  • 6Foucher S, Benie G B, Boucher J M. Multiscale MAP Filtering of SAR Images[J]. IEEE Transactions on Image Processing, 2001, 10(1):49-60.
  • 7Donoho D L. Denoising by Soft-Thresholding[J]. IEEE Transactions on Image Processing, 1995, 41 (3) : 613-627.
  • 8Candes E J, Donoho D L. Curvelets.. a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]//Cohen C R A, Schumaker L L. Curves and Surfaces. TN: Vanderbilt University Press, 2000.
  • 9Strack J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.
  • 10Sendur L, Selesnick I W. Bivariate Shrinkage Functions for Wavelet Based Denoising Exploiting Interscale Dependency[J]. IEEE Transactions on Signal Processing, 2002,50(11):2 744-2 756.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部