期刊文献+

基于自然梯度的非平稳信号自适应盲分离算法 被引量:1

An Adaptive Blind Source Separation Approach of Non-stationary Signals by Natural Gradient Rule
下载PDF
导出
摘要 基于自然梯度原则并利用信号的时间相关属性对一类代价函数进行推导,获得一种新的非平稳信号自适应盲分离算法.算法利用样本的多时延解相关方法以及迭代计算的形式获得盲混合信号的分离矩阵,无需对观测样本进行分块处理,计算工作量低.仿真结果表明,算法分离精度高,迭代过程平稳,对多个信号源的盲分离可实现良好的分离性能. A new adaptive blind source separation algorithm of non-stationary signals was presented by using natural gradient rule and time-correlation property of the source signals acting on a cost function. The algorithm uses the multiple time-delayed de-correlation method and iterative calculation mode to get the separation matrix and no block separation for the samples is needed, so the computing cost is low. The simulation shows that the algorithm can get high separation performance and stationary separation process even for multiple blind mixed signals.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第4期513-516,共4页 Journal of Shanghai Jiaotong University
基金 国家高科技研究发展计划(863)项目(2001AA422420-02)
关键词 盲源分离 非平稳信号 自然梯度 代价函数 blind source separation non-stationary signal natural gradient cost function
  • 相关文献

参考文献7

  • 1Choi S, Cichocki A. Blind separation of nonstationary and temporally correlated sources from noisy mixtures [A]. Proceedings of the 2000 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing [C]. Sydney, NSW Australia: IEEE, 2000. 1 :105-414.
  • 2Matsuoka K, Kawamoto M. A neural net for blind separation of nonstationary signal sources [A]. IEEE International Conference on Neural Networks[C]. Orlando, FL USA:IEEE,1994.1:221-226.
  • 3Robert A, Herbert B. On-line time domain blind source separation of nonstationary convolved signals [A]. Proceedings of International Symptom on Independent Component Analysis and Blind Signal Separation (ICA) [C]. Nara ,Japan: [s.n.],2003.1-6.
  • 4Hsiao-Chun Wu, Principe J C. A unifying criterion for blind source separation and decorrelation: simultaneous diagonalization of correlation matrices[A]. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelia Island, FL USA:IEEE, 1997. 496-505.
  • 5Amari S. Natural gradient works efficiently in learning[J]. Neural Computing, 1998,10(2): 251-276.
  • 6Choi S, Cichocki A, Amari S. Equivariant nonstationary source separation [J]. Neural Networks, 2002,15:121-130.
  • 7Shindo H, Hirai Y. Blind source separation by a geometrical method[A]. Proceedings of the 2002 International Joint Conference on Neural Networks[C]. Honolulu, HI USA:[s.n.],2002.2:1109-1114.

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部