摘要
考虑了C* -代数A交换性的凸函数特征.构造了在C* -代数A上是凸函数,但是在M2 上却不是算子凸的函数.并由算子凸函数的性质证明了非线性型的Strinespring定理,即C*
The characterizations for convex function of commutativity of a C~*-algebra A is taken into account.some functions which are not matrix convex of order 2 but operator convex on A is constructed From operator convex property of functions, we give the result as the nonlinear version of Strinespring theorem. That is, a C~*-algebra A is commutative if and only if there exists a continuous convex function which is not matrix convex on M_2 but operator convex on a C~*- algebra A.
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
北大核心
2005年第2期281-284,共4页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
国家自然科学基金资助项目 (10 0 710 47)
关键词
算子凸函数
矩阵凸函数
正定矩阵
convex operator function
convex matrix function
positive definite matrix