期刊文献+

Observation and computer simulation of multicomponent chemical short-range order (MCSRO) for the bulk metallic glasses

Observation and computer simulation of multicomponent chemical short-range order (MCSRO) for the bulk metallic glasses
下载PDF
导出
摘要 The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is il- lustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical inter- action of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pic- torially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised. The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is il- lustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical inter- action of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pic- torially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.
出处 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期143-150,共8页 北京科技大学学报(英文版)
基金 This work is supported by (1) National Natural Science Foundation of China (No.50071005 50431030 and 50171006 (2) Hi-techResearch and Development Program of China (No.2001AA331010) (3) Major State Basic Research Development Program of China(973) (G2000 67201-3) and Major Program of Science and Technology of Beijing (H020420030320).
关键词 bulk metallic glasses short-range order nano-diffraction and HRTEM technology molecular dynamic simulation bulk metallic glasses short-range order nano-diffraction and HRTEM technology molecular dynamic simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部