期刊文献+

多重响应的非参数预测的渐近贝叶斯设计(英文)

Asymptotic Bayesian Design Nonparametric Multiresponse Prediction
下载PDF
导出
摘要 本文研究在单位方体上多重响应预测的试验设计问题.将多重响应函数视作相互独立的无限维随机过程的实现,因此我们采用非参数贝叶斯方法及渐近技术建立渐近贝叶斯设计准则.在一定条件下,我们证明单位方体上的均匀设计测度是最优渐近贝叶斯设计. This paper deals with Bayesian design in the unit cube for multiresponse prediction with infinite-dimensional random functions as priors. In order to make optimization more tractable, we adopt the asymptotics used in Mitchell et al. (1994). It is shown that the uniform continuous design on the unit cube is optimum under the asymptotic Bayes criterion for a certain prior specification. It follows that the uniform design proposed by Fang and Wang (1994) performs very well for the multiresponse prediction.
作者 岳荣先
出处 《应用概率统计》 CSCD 北大核心 2005年第2期113-120,共8页 Chinese Journal of Applied Probability and Statistics
基金 This work was partially supported by a NSFC grant 10271078, E-Institutes of Shanghai Municipal Education Commission (Project Number E03004) the Special Funds for Major Specialties of Shanghai Education Committee.
关键词 多重响应模型 非参数贝叶斯方法 均匀设计 Multiresponse model, nonparametric Bayesian design, asymptotic, uniform design.
  • 相关文献

参考文献13

  • 1Bischoff, W., On D-optimal designs for linear models under correlated observations with an application to a linear model with multiple response, J. Statist. Plann. Inference, 37(1993), 69-80.
  • 2Draper, N.R. and Hunter, W.G., Design of experiments for parameter estimation in multiresponse situations, Biometrika, 53(1966), 525-533.
  • 3Fang, K.T. and Wang, Y., Number-Theoretic Methods in Statistics, Chapman and Hall, New York,1994.
  • 4Federov, V.V., Theory of Optimal Experiments, Academic Press, New York, 1972.
  • 5Khuri, A.I., Multiresponse surface methodology, In S. Ghosh and C.R. Rao Eds., Handbook of Statistics, Vol. 13: Design and Analysis of Experiments, Elsevier, 261-308, 1996.
  • 6Kim, W.B. and Draper, N.R., Choosing a design for straight line fits to two correlated responses,Statist. Sinica, 4(1994), 275-280.
  • 7Krafft, O. and Schaefer, M., D-optimal designs for a multivariate regression model, J. Multivariate Analysis, 42(1992), 130-140.
  • 8Mitchell, T., Sacks, J. and Ylvisaker, D., Asymptotic Bayes criteria for nonparametric response surface design, Ann. Statist., 22(1994), 634-651.
  • 9Owen, A.B., Randomized orthogonal arrays for computer experiments, integration and visualization,Statist. Sinica, 2(1992), 439-452.
  • 10Wijesinha, M.C. and Khuri, A.I., Construction of optimal designs to increase the power of the multiresponse lack of fit test, J. Statist. Plann. Inference, 16(1987), 179-192.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部