期刊文献+

时间—空间随机环境中1维紧邻随机游动首达时分布性质

On the First-arrival Time Series of One-dimensional Nearest-neighbor Random Walks in a Space-time Random Environments
下载PDF
导出
摘要 讨论时间-空间随机环境下1维紧邻随机游动.对应随机环境的分布Q的性质,首达时{Tn}n≥0分别有严平稳、独立同分布性质,并计算出首达时差序列{τn}n≥1的数学期望. On one-dimensional nearest-neighbour random walks in a space-time random environment are discussed. It is proved that first-arrival time series is a stationary, i.i.d. series corresponding to stationary, and i.i.d. distribution of the random environment.
出处 《温州师范学院学报》 2005年第2期20-23,共4页 Journal of Wenzhou Teachers College(Philosophy and Social Science Edition)
关键词 随机环境 随机游动 紧邻 平稳 random environments random walks nearest-neighbour stationary
  • 相关文献

参考文献3

二级参考文献8

  • 1Zeitouni O. Lecture notes on RWRE, 2001, available at http://www. wee. technion. ac. il/aeitouni/ps/notes1. ps.
  • 2Sznitman A S, Zerner M. A law of large numbers for random walks in random environment[J]. Ann Probab ,1999,27: 1851-1859.
  • 3Kalikow S A. Generalized random walks in random environments[J]. Ann Probab , 1981,9:753-768.
  • 4Spitzer F. Principles of random walk[M]. New York: Springer, 1964.
  • 5Zeitouni O. Random walks in random environments[J]. Proceedings of ICM 2002( Ⅲ ), 117 - 127.
  • 6Solomon F. Random walks in a random environment[J ]. Ann Probab , 1975,3: 1 - 31.
  • 7Cogburn R. The ergodic theory of Markov chains in random environments[J]. Z W , 1984,66: 109-128.
  • 8Orey S. Markov chains with stochastically stationary probabilities[J]. Ann Probab , 1991,19:907-926.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部