期刊文献+

关于对│x│有理插值逼近的收敛性 被引量:2

On the Convergence of Approximation for the Rational Function to |x|
下载PDF
导出
摘要 研究了[-1,1]上节点集的构造、分布特点和其相应的Newman型有理函数对│x│逼近的收敛性之间的本质性联系.指出了对于在零点附近稠密的节点集,若节点在零点附近分布的稠密度大于Newman型节点集对│x│插值时的情形,那么随着零点附近节点稠密度的不断增大,对│x│的有理插值逼近的收敛性呈现逐渐减弱直至不收敛的变化趋势. The relation between the distribution of sets of interpolation nodes and the quality of approximation for Newman- type rational function to |x| is studied in this paper. For the sets of interpolation nodes whose density concentrates to zero, we reveal if the distribution of nodes close to zero is denser than that of Newman-type interpolation set, the denser the distribution is, the weaker the convergence of rational approximation to |x| will be.Besides, a special set of nodes is discussed whose density concentrates to zero, but |x| can’t be approximated.
作者 胡雯
出处 《温州师范学院学报》 2005年第2期24-30,共7页 Journal of Wenzhou Teachers College(Philosophy and Social Science Edition)
关键词 有理逼近 收敛性 分布稠密度 rational approximation convergence density of distribution.
  • 相关文献

参考文献1

二级参考文献3

  • 1A. L. Levin,E. B. Saff.Fast decreasing rational functions[J].Israel Journal of Mathematics.1999(1)
  • 2L. Brutman,E. Passow.On Rational Interpolation to |x|[J].Constructive Approximation.1997(3)
  • 3Helmut Werner.Rationale Interpolation von |x| in ?quidistanten Punkten[J].Mathematische Zeitschrift.1982(1)

共引文献19

同被引文献15

  • 1张慧明,李文汉,李令斗.|x|的有理逼近[J].山西师范大学学报(自然科学版),2006,20(2):10-13. 被引量:2
  • 2谢庭藩.Newman有理插值算子的一个扩充[J].中国计量学院学报,2004,15(3):242-245. 被引量:3
  • 3戴慧丽.两类Chebyshev零点的Newman型有理算子逼近|x|的渐近性质[J].中国计量学院学报,2006,17(3):243-245. 被引量:2
  • 4田漪,蒋艳杰.对|x|的有理逼近分析[J].河北师范大学学报(自然科学版),2007,31(1):21-23. 被引量:2
  • 5Bernstein S N. Sur la meilleure approximation de |x| pardes polynomes de degres donnes[J]. Acta Math, 1913,37:1-57.
  • 6Newman D J. Rational approximation to |x|[J]. Mich Math J, 1964,11 : 11-14.
  • 7Vjacheslavov N S. On the uniform approximation of |x| by rational functions[J]. Soviet Math Dokl,1975(16) :100-104.
  • 8Ilive G I, Opits U. Comonotone approximation of |x| by rational functions[J]. Serdica Bulgar Math Publ, 1984,10 (1): 88-105.
  • 9Brutman L , Passow E. On rational interpolation to |x|[J]. Constr Approx,1997(13):381-391.
  • 10Werner H. Rational interpolation yon |x| in aquidistanten punkten[J]. Math Z,1982,180:85-118.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部