期刊文献+

层状横观各向同性饱和土的非轴对称动力响应 被引量:3

THE NON-AXISYMMETICAL DYNAMIC RESPONSE OF LAYERED TRANSVERSELY ISOTROPIC SATURATED SOILS
下载PDF
导出
摘要 通过方位角的Fourier变换,将圆柱坐标系下横观各向同性饱和土的Biot非轴对称波动方程转化为一组一阶常微分方程组.然后基于径向Hankel变换,建立问题的状态方程;求解状态方程后,得到传递矩阵.进而利用传递矩阵,结合饱和层状地基的边界条件、排水条件及层间接触和连续条件,求解了任意震源力作用下层状横观各向同性饱和地基频域动力响应问题.时域解可通过频率的Fourier积分得到. The dynamic response of layered saturated soils to an arbitrary buried source is useful and important in seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. Therefore, after Biot putting forward the general wave equations in isotropic saturated porous medium, there are a series of work on dynamic response in such medium by the FEM, BEM(in frequency space or Laplace space), as well as analytical method(completed by Fourier expanding and Hankel integral transformation). However, the most researches focus on the isotropic saturated porous medium less involving in anisotropic medium and existing the limitations among the work mentioned above: the FEM relating to enormous amount of calculation as well as complex artificial boundary, the BEM involving in the completed dynamic singular close solution, which is hard to attain in layered saturated porous medium. Although the analytical expression in dynamic stiffness matrix containing 8(N + 1) pending coefficients is given in Ref.[10], it is an onerous work for computing N-layers saturated soils.The purpose of this article is to study the non-axisymmetical dynamic response of layered transversely isotropic saturated soils under an arbitrary buried source. In the first part, based on Biot's theory for fluid-saturated porous media, the 3-D wave equations in cylindrical coordinate for transversely isotropic saturated poroelastic media are transformed into the 1-order governing differential equations completed by the Fourier expanding with respect to azimuth. Then, transfer matrixes within layered media are derived by introducing combined state vector and Hankel integral transformation. The second part gives the analytical expression in dynamic response for multilayered such medium using transfer matrixes followed by boundary conditions and continuity conditions as well as drainage conditions. In the third part, some numerical results are listed. Time-domain results may obtain by Fourier synthesis over frequency.
作者 黄义 王小岗
出处 《力学学报》 EI CSCD 北大核心 2005年第2期215-224,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(56978003)
关键词 各向同性 饱和层状地基 BIOT波动方程 傅里叶变换 HANKEL变换 传递矩阵 transversely isotropic, saturated layered media, Blot's wave equations, Fourier expanding, Hankel integral transform, transfer matrix
  • 相关文献

参考文献12

  • 1黄义,张玉红.饱和土三维非轴对称Lamb问题[J].中国科学(E辑),2000,30(4):375-384. 被引量:34
  • 2张引科,黄 义.THE NON-AXISYMMETRICAL DYNAMIC RESPONSE OF TRANSVERSELY ISOTROPIC SATURATED POROELASTIC MEDIA[J].应用数学和力学,2001,22(1):56-70. 被引量:26
  • 3张引科,黄义.弹性饱和多孔介质在非轴对称荷载下的稳态动力响应[J].土木工程学报,2002,35(3):41-45. 被引量:13
  • 4Biot MA. The theory of propagation of elastic waves in fluid-saturated porous solid. J Acoust Soc Am, 1956, 28(2):168~191.
  • 5Biot MA. General theory of acoustic propagation in porous dissipative media. J Acoust Soc Am , 1962, 34(9):1254~1264.
  • 6Biot MA. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys, 1962, 33(4): 1482~1498.
  • 7Zienkiewicz OC, Shiomi T. Dynamic behavior of saturated porous media, the general Biot formulation and its numerical solution. Int J Numer and Analytical Methods in Geomech, 1984, 8(1): 71~96.
  • 8Cheng A H-D, Badmus J, Beskos DE. Integral equations for dynamic poroelasticity in frequency domain with BEM solution. J Engrg Mech, ASCE, 1991, 117(5): 1136~1157.
  • 9Chen J, Dargush GF. Boundary element method for dynamic poroelastic and thermoelastic anaiysis. Int Solids and Struct, 1995, 32(15): 2257~2278.
  • 10Philippacopoulous AJ. Waves in partially saturated medium due to surface loads. J Engrg Mech, ASCE, 1988,114(10): 1740~1759.

二级参考文献24

  • 1王立忠,陈云敏,吴世明,丁皓江.饱和弹性半空间在低频谐和集中力下的积分形式解[J].水利学报,1996,28(2):84-88. 被引量:41
  • 2张玉红.饱和土地基与基础结构动力相互作用研究[M].西安:西安建筑科技大学,1999..
  • 3张玉红.饱和土地基与基础结构动力相互作用:博士学位论文[M].西安:西安建筑科技大学,1999..
  • 4Sneddon I N 张燮(译).富里叶变换[M].北京:科学出版社,1958..
  • 5张楚汉.结构-地基动力相互作用问题(结构与介质相互作用理论及其应用)[M].南京:河海大学出版社,1993..
  • 6张引科 黄义.横观各向同性饱和弹性多孔介质的非轴对称动力响应[J].应用数学和力学,22(1):56-70.
  • 7Biot M A. The theory of propagation of elastic waves in fluid-saturated porous solid[J]. J Acoust Soc Am, 1956, 28(2):168-191 .
  • 8Biot M A. General theory of acoustic propagation in porous dissipative media[J]. J Acoust Soc Am, 1962, 34(9) :1254-1264.
  • 9Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys, 1962, 33(4) : 1482-1498.
  • 10Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media, the general Bi0t formulation and its numerical solution[J]. Int J Numer and Analytical Methods in Geomech, 1984, 8(1) : 71-98.

共引文献49

同被引文献30

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部