多维非定常中子迁移方程Galerkin有限元法近似解的收敛性和广义解的存在性(英文)
The Convergence of Approximate Solution for Galerkin Finite Elements Method and the Existence of Generalized Solutions of the Unsteady Neutron Transport Equation in Multidimension
摘要
使用Galerkin有限元法研究了多维非定常中子迁移方程,证明了Galerkin有限元法近似解的收敛性和广义解的存在性.
The objective of this paper is using Galerkin finite elements method to research multidimensional plane unsteady neutron transport equation, and to get the convergence of Galerkin finite elements method approximate solution and the existence of generalized solutions.
出处
《应用泛函分析学报》
CSCD
2005年第1期1-12,共12页
Acta Analysis Functionalis Applicata
基金
ThisworkissupportedbyJiangxiprovincenaturalsciencefoundation(0311022)
参考文献5
-
1Pitkaramta J, Silrennoinen P. Computational experimentation on the finite element method in bare slab criticatity calculations[J]. Nucl Sci Eng, 1973, 50: 297-306.
-
2Miller W F, Lewis E E, Rcssow E C. The application of phase-space finite elements to the twodimensional neutron transport equation in X - Y geometry[J]. Nucl Sci Eng, 1973, 52: 12-22.
-
3Miller W F, Lewis E E, Rcssow E C. The application of phase-space finite elements to the onedimensional neutron transport equation[J]. Nucl Sci Eng, 1973, 51: 148-156.
-
4Pitkarumte J, Silvennoinen P. Finite element annlysis of some cretical fast assemblies[J]. Nucl Sci Eng,1973, 52: 447-453.
-
5Yosida K. Functional Analysis[M]. Springer-Verlag, New York, 1968.