期刊文献+

从NLS方程和复MKdV方程的相容性到三组2+1维孤立子方程的解 被引量:4

From the compatibility of NLS equation and complex MKdV equation to the solutions of three systems of 2+1 dimensional soliton equations
下载PDF
导出
摘要 研究非线性薛定谔方程(NLS方程)和复MKdV方程的相容性,由此得到其相容解与三组2+1维孤立子方程解之间的关系.借助1+1维孤立子方程的理论,由NLS方程和复MKdV方程的相容解得到2+1维孤立子方程的精确解. The compatibility of NLS equation and complex MKdV equation are proved, and the connection of the compatible solutions of NLS equation and complex MKdV equation with the solutions of three systems of (2+1) dimensional soliton equations are also presented. With the help of the theory of 1+1 dimensional soliton equations, the solutions of these 2+1 dimensional soliton equations are obtained by making use of the compatible solutions of NLS equation and complex MKdV equation.
作者 杜殿楼
机构地区 郑州大学数学系
出处 《河南科学》 2005年第3期316-319,共4页 Henan Science
基金 国家自然科学基金项目(10471132) 河南省教育厅自然科学基金(2004110006) 河南省青年骨干教师基金
关键词 NLS方程 复MKdV方程 相容性 2+1维孤立子方程 NLS equation complex MKdV equation compatibility 2+1-dimensional soliton equations
  • 相关文献

参考文献8

  • 1M J Ablowitz, P A Clarkson. Solitons, nonlinear evolution equations and inverse scattering[M]. Cambridge University Press,1991.
  • 2R Hirota. Direct methods in soliton theory[M]. Springer, Berlin, 1980.
  • 3V B Matveev, M A Salle. Darboux transformations and solitions[M]. Springer, Berlin, 1991.
  • 4E D Belokolos, A I 13obenko, V Z Enol'skii, A R Its, V B Matveev. Algebro-Geometric approach to nonlinear integrable equations[M]. Springer, Berlin, 1994.
  • 5Yi Cheng, Yi-shen Li. Constraints of the2+ 1 dimensional integrable soliton systems[J]. J.Phys. A: Math. Gen. 1992,25:419 - 431.
  • 6B Konopelchenko, W Strampp. Reductions of (2 + 1 ) - dimensional integrable systems via mixed potential-eigenfunction constraints[J]. J.Phys. A. Math. Gen. 1992,25:4399-4411.
  • 7Cewen Cao, Yongtang Wu, Xianguo Geng. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system[J]. J. Math. Phys. 1998,40:3948- 3970.
  • 8Dianlou Du. Complex form, reduction and Lie-Poisson structure for the nonlinearized spectral problem of the Heisenberg hierarchy[J]. Physica A, 2002, 303: 439-456.

同被引文献6

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部