期刊文献+

一种基于图的关联规则挖掘改进算法 被引量:3

An Improved Graph-Based Algorithm for Discovering Association Rules
下载PDF
导出
摘要 本文提出了一种基于图的关联规则挖掘的改进算法。首先介绍了基于图的关联规则挖掘算法;然后,在此基础上对原算法进行了修改,通过在图中查找完全子图来寻找频繁项集;最后,对原算法、改进算法和Apriori算法的优缺点进行了简单的比较分析。 In this paper we present an improved graph-based algorithm for discovering association rules. Firstly, the graph-based algorithm for discovering association rules is discussed. Then, based on it, this paper modifies the former algorithm, and the large itemsets can be generated through discovering the clique graphs in the association graph. Finally, we compare the improved algorithm with the former algorithm and the Apriori algorithm.
出处 《计算机工程与科学》 CSCD 2005年第5期48-51,共4页 Computer Engineering & Science
关键词 数据挖掘 数据库 知识发现 关联规则 APRIORI算法 计算机 data mining association rule clique graph
  • 相关文献

参考文献6

  • 1R Agrawal,R Srikant.Fast Algorithms for Mining Association Rules in Large Databases[R].Research Report RJ 9838,IBM Almaden Reserch Center,1994.
  • 2J S Park,M S Chen,P S Yu.An Effective Hash-Based Algorithm for Mining Association Rules[A].Proc 1995 ACM-SIGMOD Int'l Conf Management of Data[C].1995.175-186.
  • 3A Savasere,E Omiecinski,S Navathe.An Efficient Algorithm for Mining Association Rules in Large Database[A].Proc 1995 Int'l Conf Very Large Data[C].1995.432-443.
  • 4S Brin,R Motwani,J D Ullman,et al.Dynamic Itemset Counting and Implication Rules for Market Basket Analysis[A].Proc 1997 ACM-SIGMOD Int'l Conf Management of Data[C].1997.225-264.
  • 5Fenando Berzal,Juan-Carlos Cubero,Nicolas Marin, et al. TBAR:An Efficient Method for Association Rule Mining in Relational Databases[J].IEEE Trans on Data and Knowledge Engineering,2001,13(1):47-64.
  • 6Show-Jane Yen, Arbee L P Chen. A Graph-Based Approach for Discovering Various Types of Association Rules[J].IEEE Trans on Knowledge and Data Engineering,2001,13(5):839-845.

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部