期刊文献+

一类分数阶控制系统的数值解法 被引量:7

Nynerucal Methods for a Fractional-order Control System
下载PDF
导出
摘要 着重考虑4项的分数阶动力控制系统的微分方程.证明了其解的存在性与惟一性,并用Mittag Leffle函数将解表示出来,但其解析解是很难数值地求出的.利用Caputo,Riemann Liouville和Geünwald Letnikov分数阶导数定义之间的联系,提出了3种数值解法来模拟其解析解.最后给出了数值例子,从而说明了所提出的3种数值方法可以用于模拟分数阶控制系统的性态. Fractional-order mathematical models are applied in fractional-order dynamical controlled systems.These new models are more adequate than integer-order models.A four-term fractional differential equation corresponded by fractional-order controlled systems is considered.The existence and uniqueness of the solution of this model is given,and the analytical solution is described by Mittag-Leffle function.Using the relationship between the Caputo,Riemann-Liouville and Geünwald-Letnikov definitions,three numerical methods for the fractional-order control system are proposed.Finally,some numerical examples are presented.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期313-317,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271098)资助
关键词 数值解法 分数阶 动力控制系统 解的存在性 微分方程 导数定义 数值方法 解析解 惟一性 模拟 函数 性态 fraction-order control system Caputo definitions Riemann-Liouville definition Grunwald-Letnikov definition numerical method
  • 相关文献

参考文献7

  • 1Podlubny I.Fractional Differential Equation[M].New York:Academic Press,1999.
  • 2Gorenflo R.Time fractional diffusion:a discrete random walk approach[J].Nonlinear Dynamiccs,2002,29:129-143.
  • 3Rektory K.Handbook of Applied Mathematics,Vol.I,II[M].Prague:SNTL,1988(in Czech).
  • 4Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck equation[J].J.Comp.Appl.Math.,2004,166:209-219.
  • 5Diethelm K.An algorithm for the numerical solution of differential equations of fractional order[J].Electronic Transactions on Numerical Analysis,1997,5:1-6.
  • 6Ford N,Simpson A.The approximate solution of fractional differential equation of order greater than 1,Numerical Analysis Report No.386[R].Liverpool,UK:Association with Chester College-A College of the University,2003-05-03.
  • 7Diethelm K,Freed A.The FRACPECE subroutine for the numerical solution of differential equations of fractional order[EB/OL].http://www-public.tu-bs.de:8080/~diethelm/papers.html.

同被引文献74

引证文献7

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部