摘要
提出了一种基于神经网络的缺陷表征方法.该方法采用Fischer线性判别分析对表征缺陷的时域信号的波形参数进行选择,并将这些参数作为神经网络的输入对智能缺陷表征系统进行训练,用概率神经网络和BP神经网络分别对缺陷的类型和大小进行识别.对135种人造焊接缺陷(裂纹、夹杂和气孔)的试验结果表明,文中方法对辨识缺陷表征信息和提高缺陷识别率非常有效.
This paper proposes a method for flaw characterization on the basis of neural networks. In this me- thod, a selection of the shape parameters defining the pulse-echo envelope reflected from a flaw is carried out by Fischer linear discriminant analysis. The selected parameters are then used as the inputs of neural networks to train the proposed intelligent flaw characterization system. Moreover, probabilistic neural networks and back propagation neural networks are respectively adopted to determine the sizes and numbers of flaws. Experimental results for 135 systematic weld flaws (crack, slag and porosity) indicate that the proposed method is effective in the flaw characterization with great classification rate.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第4期5-9,共5页
Journal of South China University of Technology(Natural Science Edition)
基金
广东省科技计划资助项目(2004A11303001)~~
关键词
超声检测
缺陷表征
无损评价
神经网络
ultrasonic testing
flaw characterization
nondestructive evaluation
neural network