期刊文献+

基于神经网络的超声检测缺陷表征(英文) 被引量:1

Neural Network-Based Characterization of Flaws Tested by Ultrasonic
下载PDF
导出
摘要 提出了一种基于神经网络的缺陷表征方法.该方法采用Fischer线性判别分析对表征缺陷的时域信号的波形参数进行选择,并将这些参数作为神经网络的输入对智能缺陷表征系统进行训练,用概率神经网络和BP神经网络分别对缺陷的类型和大小进行识别.对135种人造焊接缺陷(裂纹、夹杂和气孔)的试验结果表明,文中方法对辨识缺陷表征信息和提高缺陷识别率非常有效. This paper proposes a method for flaw characterization on the basis of neural networks. In this me- thod, a selection of the shape parameters defining the pulse-echo envelope reflected from a flaw is carried out by Fischer linear discriminant analysis. The selected parameters are then used as the inputs of neural networks to train the proposed intelligent flaw characterization system. Moreover, probabilistic neural networks and back propagation neural networks are respectively adopted to determine the sizes and numbers of flaws. Experimental results for 135 systematic weld flaws (crack, slag and porosity) indicate that the proposed method is effective in the flaw characterization with great classification rate.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期5-9,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省科技计划资助项目(2004A11303001)~~
关键词 超声检测 缺陷表征 无损评价 神经网络 ultrasonic testing flaw characterization nondestructive evaluation neural network
  • 相关文献

参考文献7

  • 1刘伟军,王晓明,吴宏基,刘健.基于神经网络的超声无损检测缺陷定征方法的研究[J].大连理工大学学报,1998,38(5):548-552. 被引量:5
  • 2Houghton J R, Shen J. Ultrasonic reflector classification with autoregressive models [ J ]. Res Nondestr Eval, 1990( 1 ) :246 - 253.
  • 3美国无损检测学会 《美国无损检测手册》译审委员会译.美国无损检测手册[M].上海:世界图书出版公司,1996..
  • 4Masnata A, Sunseri M. Neural network classification of flaws detected by ultrasonic means [ J]. NDT & E Int,1996,29(2) :87 -93.
  • 5Song Sung-Jin,Shin Young-Kil. Eddy current flaw characterization in tubes by neural networks and finite element modeling [J]. NDT & E Int,2000,33(4) :233 -243.
  • 6Song S J. Ultrasonic flaw classification and sizing [ D]. Iowa : Iowa State University, 1991.
  • 7Song S J, Schmerr L W. Ultrasonic flaw classification in weldmentsusing probabilistic neural networks [ Jl. Nondestructive Eval, 1992,11:69 - 77.

二级参考文献2

  • 1陈颜华,无损检测,1996年,5卷,3期,40页
  • 2黄德双,神经网络模式识别系统理论,1996年

共引文献6

同被引文献8

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部