期刊文献+

一类多偏差变元的n种群Lotka-Volterra模型的周期正解 被引量:4

On the Existence of Positive Periodic Solutions for n-Species Lotka-Volterra Population Model with Multiple Deviating Arguments
原文传递
导出
摘要 本文研究了一类多偏差变元Lotka-Volterra种群模型的间期正解问题,利用重合度拓展定理和一些分析技巧,得到了周期正解存在性的新结果.与已有文献相比,本文所讨论的模型更具一般性,它包含了以前人们所研究的竞争-种群模型、捕食-种群模型等,而且估计先验界的方法也是全新的. In this paper, using some analysis techniques and the continuation theorem of coincidence degree theory, the authors study a kind of n-species Lotka-Volterra population model with multiple deviating arguments. Some new results on the existence of positive periodic solutions are obtained. For the comparision, the model subject to this paper is more general, which includes some known Lotka-Volterra type systems, such as competitive systems, predator-prey systems and so on. Meanwhile, the method to estimate a priori bounds of periodic solutions is different from the corresponding ones found in the existing literature.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第3期427-438,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(1987100510371006)安徽师范大学专项基金项目(2002ZXZ001)
关键词 周期正解 重合度拓展定理 Lotka-Volterra种群模型 Positive periodic Solution Continuation theorem of coincidence degree principle Lotka-Volterra population model
  • 相关文献

参考文献16

  • 1Freedman H. I., Waltman P., Persistence in a model of three competitive populations, Math. Biol., 1985, 73:89-101.
  • 2Ahmad S., On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc., 1993,117: 199-204.
  • 3So Joseph W. H., Yu J. S., Global attractivity in a population model with time delay, Proc. Amer. Math.Soc., 1995, 123(9): 2687-2694.
  • 4Kuang Y., Global stability of Gause-type predator-prey systems, J. Math. Biol., 1990, 28: 463-474.
  • 5Kuang Y., Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations, 1996, 9(3): 557-567.
  • 6Kuang Y., Smith H. L., Global stability for infinite delay Lotka-Volterra type systems, J. Diff. Eqns., 1993,103: 221-246.
  • 7He X. Z., Persistence, stability and level crossings in an integrodifferential system, J. Math. Biol., 1994, 32:395-426.
  • 8Li Y. K., The existence and global attratitvty of positive periodic solutions for a class of delay differentiall equations, Science in China, Ser. A, 1998, 28(2): 108-118 (in Chinese).
  • 9Gopalsamy K., Global asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser B, 1982, 24: 160-170.
  • 10Fan M., Wang K., Jiang D. Q., Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments, Math. Biosci., 1999, 160:47-61.

同被引文献24

  • 1武玉英,赵丽霞.人口发展方程中的波动[J].系统工程理论与实践,1995,15(4):16-24. 被引量:5
  • 2刘心歌,唐美兰,刘心笔,李岱芳.一类中立型时滞种群对数模型的周期解[J].江西师范大学学报(自然科学版),2006,30(5):475-477. 被引量:2
  • 3邓新春,厉亚.一类中立型对数种群模型的周期正解[J].吉首大学学报(自然科学版),2007,28(1):16-18. 被引量:1
  • 4卢卡斯WJ.微分方程模型[M].长沙:国防科技大学出版社,1998.
  • 5Gurtin M E. MacCamy R C. Nonlinear age-dependent population dynamics[J]. Archive for Rational Mechanics and Analysis, 1974, 54(3): 281-300.
  • 6Cushing J M. Periodic Mckendrick equations for age-structured population growth[J]. Computer and Mathematics with Application, 1986, 12A(4/5): 513-526.
  • 7马知思,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
  • 8LiJ Xiang, IJu Shiping, Yan Ping. Existence and global attractivity of positive periodic solutions of Lotka-Volterra predator-prey systems with deviating arguments[J]. Nonlinear Analysis: Real World Applications,2010,11; 574-583.
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations[ M]. Berlin: Springer-Verlag, 1977.
  • 10Xu R,Chaplain M A J,Davidson F A. periodic solution for a three-species Lotka-Volterra Food-Chain model with times delays[J].Mathematical and Computer Modelling,2004.823-837.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部