期刊文献+

多圆盘上的Toeplitz算子的紧的乘积

Compact Product of Toeplitz Operators on the Polydisk
原文传递
导出
摘要 对于多圆盘上的有界多重调和函数f,g,我们证明多圆盘Bergman空间上的Toeplitz算子的乘积TfTg是紧算子的充要条件是TfTg是零.这等价于f或g是零.换位子TfTg-TgTf是紧算子当且仅当换位子TfTg-TgTf是零.这等价于对每一个j,存在不全为零的常数αj和βj,使得αjf+βjg关于变量zj(1≤j≤n)是常数. For bounded pluriharmonic functions f, g on the polydisk, we show that two Toeplitz operators product TfTg on the Bergman space of the polydisk is compact if and only if TfTg = 0, or if and only if f or g is zero; TfTg - TgTf is compact if and only if TfTg - TgTf = 0, or if and only if for every j, there are constants αj and βj, not both zero, such that αjf + βjg is constant in variable zj (1≤j ≤ n).
作者 丁宣浩
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第3期493-498,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10361003)广西自然科学基金资助项目
关键词 TOEPLITZ算子 紧算子 多圆盘 Toeplitz operators Compact operators Polydisk
  • 相关文献

参考文献10

  • 1Guo K., A problem on products of Toeplitz operators, Proc. Amer. Math. Soc., 1996, 124: 869-871.
  • 2Gu C., Products of several Toeplitz operators, J. Funct. Anal., 2000, 171: 483-527.
  • 3Ding X., Products of Toeplitz operators on the polydisk, Integral Equations Operator Theory, 2003, 45:389-403.
  • 4Ahern P., Cuckovic Z, A theorem of Brown-Halmos type for Bergman space, toeplitz operators, J. Functional Analysis, 2001, 187: 200-210.
  • 5Rudin W., Function theory on the polydiscs, New York: Benjamin, 1969.
  • 6Axler S., Cuckovic Z, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory, 1991, 14: 1-11.
  • 7Brown A., Halmos P., Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 1964, 213: 89-102.
  • 8Stroethoff K., Essentially commuting Toeplitz operators with harmonic symbols, Canad. J. Math., 1991,45(5): 1080-1093.
  • 9Sun S., Zheng D., Toeplitz operators on the polydisk, Proc. Amer. Math. Soc., 1996, 11: 3351-3356.
  • 10Ding X., Tang S., The pluriharmonic Toeplitz operators on the polydisk, J. Mathematical Analysis and Application, 2001, 254: 233-246.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部