期刊文献+

紧支撑正交插值的多小波和多尺度函数 被引量:11

Compactly Supported Orthogonal Interpolation Multiwavelets and Multiscaling Functions
原文传递
导出
摘要 本文给出一类伸缩因子为α的紧支撑正交插值多尺度函数和多小波的构造方法.设{Vj}是尺度函数Φ(x)=[φ1(x),φ2(x),…,φa(x)]T生成的多分辨分析,Vj(?)L2(R)是{a-j/2φ(?)(ajx-k),k∈Z,(?)=1,2,…,a)线性扩张构成的子空间,其插值性是指φ1(x),φ2(x),…,φa(x)满足φj(k+(?)/a)=δk,0δj,e,j,(?)∈{1,2,…,a).当Φ(x)是正交插值的,则多分辨分析的分解或重构系数能用采样点表示而不需要用计算内积的方法产生.基于此,我们建立多小波采样定理,即如果一个连续信号f(x)∈VN,则f(x)=∑i=0a-1∑k∈Zf(k/aN+i/aN+1)φi+1(aNx-k),并给出对应多小波的显式构造公式.更进一步,证明了本文构造的多小波也有插值性.最后,还给出一个构造算例. A general procedure for constructing a class of compactly supported orthogonal interpolation multiscaling functions and multiwavelets with dilation factor a are introduced. Let {Vj} be a multiresolution analysis generated by a multiscaling function Φ(x) = [φ1(x), φ2(x), …, φa(x)]T, where the subspace Vj denotes the L2 (R)-closed linear span of {a-j/2φ(?)(ajx - k), j,k ∈ Z, (?) = 1,2,…, a}. The interpolation property here means that φ1(x), φ2(x),…, φa(x) satisfy φj(k+(?)/a) = δk,0δj,(?),j, (?) ∈ {1,2,…, a}. When Φ(x) is orthogonal interpolation, the coefficients in the multiresolution representation can realized by sampling instead of inner products. Thereby, multiwavelets sampling theorem is established, i.e., if a continuous signal f(x) ∈ VN, then f(x) = Σi=0a-1 Σk∈Zf(k/aN+i/aN+1)φi+1 (aNx - k). The corresponding orthogonal multiwavelets are constructed explicitly. What is more, the multiwavelets we construct here are also interpolation. An example is also presented.
作者 杨守志
机构地区 汕头大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第3期565-572,共8页 Acta Mathematica Sinica:Chinese Series
基金 广东省自然科学基金项目(032038)广东省自然科学基金博士基金项目(04300917)
关键词 正交 插值 多尺度函数 Orthogonal Interpolation Multiscaling functions
  • 相关文献

参考文献20

  • 1Shen Z. W., Refinable function vectors, SIAM J. Math. Anal., 1998, 29: 235-250.
  • 2Cabrelli C., Heil C., Molter U., Accuracy of lattice translation of several multidimensional refinable function,J. Approx. Theory, 1998, 95: 5-52.
  • 3Lagarias J. C., Wang Y., Orthogonality criteria for compactly supported refinable functions and refinable function vectors, J. Fourier Anal. Appl., 2000, 6: 153-170.
  • 4Yang S. Z., A fast algorithm for constructing orthogonal multiwavelets, Anziam Journal, 2004, 46: 185-202.
  • 5Jia R. Q., Vector subdivision schemes and multiple wavelets, Math. Comput., 1998, 67: 1533-1563.
  • 6Bi N., Dai X., Sun Q., Construction of compactly supported M-bank wavelets, Appl. Comput. Harmonic Anal., 1999, 6: 113-131.
  • 7Sun Q., M-band scaling functions with minimal supported are asymmetric, Appl. Comput. Harmonic Anal.,2002, 12: 166-170.
  • 8Han B., Symmetric orthonormal scaling functions and wavelets with dilation factor 4, Adv. Compt. Math.,1998, 8: 221-247.
  • 9Jiang Q. T., Parameterization of M-channel orthogonal multiwavelets banks, Adv. Comp. Math., 2000, 12:189-211.
  • 10Lian J., Orthogonal criteria for multiscaling functions, Appl. Comp. Harm. Anal., 1998, 5: 277-311.

同被引文献86

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部