期刊文献+

非单特征值引出的非线性方程分歧问题 被引量:5

BIFURCATION PROBLEMS OF NONLINEAR OPERATOR EQUATIONS FROM NON-SIMPLE EIGENVALUES
原文传递
导出
摘要 本文讨论非线性方程f(x,λ)=θ的分歧问题,这里f:x×R→Y为非线性可微映射, x,Y为Banaclh空间.利用偏导算子A=fx(x0,λ0)的广义逆A+,研究了一类由非单特征值引出的分歧问题,给出了刻划分歧性的定理,推广了Crandall M G与Robinowitz P H的由单特征值引出的分歧性定理. In this paper,we discuss the bifurcation problem in solving nonlinear operator equation f(x,λ) =0, where f is a differentiable mapping from ×R→Yand X,Y are Banach spaces.By means of the generalized inverse A+ of the partial derivatire operator A = fx(x0, λ0), a class of bifucation problems from non-simple eigenvalue has been investigaed, and we obtain a bifurcation theorem on the degenerate solutions, which extend a bifuration theorem from simple eigenvalue by Crandall and Robinowitz.
出处 《应用数学学报》 CSCD 北大核心 2005年第2期236-242,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10471032) 黑龙江省自然科学基金 黑龙江省教育厅海外学人科研基金
关键词 非线性方程 分歧问题 特征值 Banach空间 导算子 广义逆 定理 映射 可微 刻划 nonlinear equation non-simple eigenvalue bifurcation theory generalized inverse
  • 相关文献

参考文献2

二级参考文献2

共引文献11

同被引文献16

  • 1张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1997..
  • 2关肇直 张恭庆 冯德兴.线性泛函分析入门[M].上海:上海科技出版社,1984.45-59.
  • 3Liu Ping ,Wang Yuwen. The Generalized Saddle-Node Bifurcation of Degenerate Solution[J]. Commentationes Mathematicae (Pol and),2005(2).
  • 4Grandall. M. G, Rabinowitz. P. H. Bifurcation from simple eigenvalue[J]. JFunctional Analysis, 1971,8.
  • 5Grandall. M, G, Rabinowitz. P. H. Bifurcation perturbation of simple eigenvalues and lineearized stability[J]. Arch Rational Meth Anal,1973,52:161-180.
  • 6Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalue [J]. J Functional Analysis, 1971, 8:321 340.
  • 7Crandall M G, Rabinowitz P H. Bifurcation perturbation of simple eigenvalues and linearized stability [J]. Arch Ration Mech Anal, 1973, 52:161-180.
  • 8Liu P, Wang Y W. A generalized saddle-node bifurcation for degenerate solution [J]. Comment Math Prace Mat, 2005, 2:145-150.
  • 9Liu P, Shi J P, Wang Y W. Imperfect transcritical and pitchfork bifurcations [J]. J Funct Anal, 2007, 251(2):573-600.
  • 10Ma J P. A generalized transversality in global analysis [J]. Pacific Journal of Mathe- matics, 2008, 236(2):357 371.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部