期刊文献+

"非汉字符号"-Haar子空间的性质 被引量:1

The Characteristics of ■-Haar Subspace
下载PDF
导出
摘要 引进1个新的L-Haar子空间,证明了当L为单位算子时, L-Haar子空间与通常的Haar子空间等价,给出了L-Haar子空间的1个性质定理. A new - Haar subspace is defined such that - Haar is equivalent to Haar when L=I.Subsequently,a characterization theorem of -Haar space is given.
出处 《吉首大学学报(自然科学版)》 CAS 2005年第1期12-14,共3页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10271025)
关键词 子空间 单位算子 HAAR 性质定理 等价 the best approximation Haar subspaces -Haar subspace
  • 相关文献

参考文献8

  • 1SHI Y G.The Limits of a Chebyshev-Type Theory of Restricted Range Approximation [J].Approx.Theory,1988,53:41-53.
  • 2CHALMERS B L,TAYLOR G D.Uniform Approximation with Constraints [J].Ber.Dt.Math-Verein,1979,81:49-86.
  • 3TAYLOR G D.Approximation by Functions Having Restricted Ranges III [J].Math.Anal.Appl.,1969,27:241-248.
  • 4TAYLOR G D.Approximation by Functions Having Restricted Ranges:Eqnality Case [J].Numer.Math.,1969,14:71-78.
  • 5KR·7·7A,SCHMIDT D.A Haar-Type Theory of Best Uniform Approximation Constraints [J].Acta.Math.Hung,1991,58:351-374.
  • 6方东辉,李冲,杨文善.强CHIP性质和广义限制域逼近的特征[J].数学学报(中文版),2004,47(6):1115-1122. 被引量:2
  • 7CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints [J].appoxi.theory,1981,37:29-43.
  • 8RICE J R.The Approximation Functions [M].London:Addison-Wesley Press,1964.

二级参考文献15

  • 1Shi Y. G., The limits of a Chebyshev-type theory of restricted range approximation, J. Approx. Theory, 1988,53: 41-53.
  • 2Rice J. R., The approximation functions, London: Addison-Wesley, 1964.
  • 3Chalmers B. L., Taylor G. D., Uniform approximation with constraints, Jber. Dt. Math-Verein, 1979, 81:49-86.
  • 4Taylor G. D., Approximation by functions having restricted ranges Ⅲ, J. Math. Anal. Appl., 1969, 27:241-248.
  • 5Taylor G. D., Approximation by functions having restricted ranges: eqnality case, J. Numer. Math., 1969,14: 71-78.
  • 6Kroo A., Schmid t D., A Haar-type theory of best uniform approximation constraints, Acta. Math. Hung,1991, 58: 351-374.
  • 7Deutach F., Li W., Ward J., A dual approach to constrained interpolation from a convex subset of Hilbert spaces, J. Approx. Theory, 1997, 90: 385-444.
  • 8Deutach F., Li W., Ward J., Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert spaces, weak Slater condition, and the strong conical hull intersection property, SIAM J. Optim.,1999, 10: 152-268.
  • 9Li C., Jin X. Q., Nonlinearly constrained best approximation in Hilbert spaces: The strong CHIP and basic constraint qualification, SIAM. J. Optim., 2002, 13: 228-239.
  • 10Li C., Ng K. F., On best approximation by nonconvex sets and perturbation of nonconvex inquality systems in Hilbert spaces, SIAM J. Optim., 2002, 13: 726-744.

共引文献1

同被引文献10

  • 1方东辉,李冲,杨文善.强CHIP性质和广义限制域逼近的特征[J].数学学报(中文版),2004,47(6):1115-1122. 被引量:2
  • 2徐士英 李冲 杨文善.Banach空间中的非线性逼近理论[M].北京:科学出版社,1998..
  • 3SINGER I. Best Approximation by Elements of Linear Subspaces in Linear Spaces[M]. New York: Spring-Verleg, 1974.
  • 4RICE J R. The Approximation Functions[M]. London: Addison-Wesley, 1964.
  • 5CHALMERS B L, TAYLOR G D. Uniform Approximation with Constraints[J]. Jber. Dt. Math.-Verein, 1979,81:49 - 86.
  • 6TAYLOR G D. Approximation by Functions Having Restricted Ranges (III) [J]. J. Math. Anal. Appl. , 1969,27 : 241 - 248.
  • 7SHI Yingguang. The Limits of a Chebyshev-Type Theory of Restricted Range Approximation[J]. J. Approx. Theory, 1988,53:41 - 53.
  • 8KROOA, SCHMIDT D. A Haar-Type Theory of Best Uniform Approximation Constraints[J]. Acta. Math. Hung, 1991,58:351 - 374.
  • 9LI Wu,CHANDAL N,SINGER I. Constraint Qualification for Semi-Infinite Systems of Convex Inequalities[J]. SIAM J. Optim. ,2000(11) :31 - 52.
  • 10LI C, NG K F, PONG T K. The SECQ, Linear Regularity and the Strong CHIP for Infinite System of Closed Convex Sets in Normed Linear Spaces[J]. SAM J. on Optim. ,2007,18(2) :643 - 665.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部