期刊文献+

基于SVM的多传感器信息融合算法 被引量:12

A Algorithm of Multiple Sensor Information Fusion Based on SVM
下载PDF
导出
摘要 支持向量机(Support Vector machine,简称SVM)是一种基于结构风险最小化原理,具有很高泛化性能的学习算法。针对工业多传感器测控系统中,被测系数与相关参数之间存在有较大的非线性和模糊关系,提出了一种基于支持SVM的多传感器信息融合模型及算法。为小样本、非线性、高维数一类多传感器信息融合问题的建模提供了一种有效的途径。通过对“纸张水份在线测量系统”应用表明,基于SVM的多传感器信息融合模型及算法在测量精度和推广性能上都具有一定的优越性。 The support vector machine (SVM) is an algorithm based on structure risk minimizing principle and having high generalization ability. In the course of multiple sensor information fusion of industrial control, sensor has bigger nonlinearity and fuzzy relation between coefficient and relevant parameter, A kind of model and algorithm of multiple sensor information fusion based on the support vector machine are proposed. The model offered a kind of effective way for little sample, non-linear, high dimension. Through use to 'paper moisture content online measuring system', the model and algorithm have certain superiority in measuring precision and performance of popularizing. ©, 2005, Science Press. All right reserved.
作者 周鸣争 汪军
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第4期407-410,共4页 Chinese Journal of Scientific Instrument
基金 安徽省自然科学基金 (0 30 4 2 30 6) 安徽省科技厅国际合作基金 (0 2 0 880 0 )资助项目
  • 相关文献

参考文献4

  • 1袁南儿,杨东勇,林毅.多传感器信息融合及其在工业控制中的应用[J].浙江工业大学学报,1999,27(4):281-286. 被引量:22
  • 2Vapnik V. The nature of statistical learning theory.New York: Springer-Verlag, 1995.
  • 3Gunn S.. Support vector machine for classification and regrossion. Jsis Report, Image Speech & Intelligent System Group, University of Southampton, 1998.
  • 4VanderbeiR J. LOQO: an interior point method for quadratic programming. Technical Report Sor-94-15, Statistics & Operations Research, Princeton University, 1994.

二级参考文献1

共引文献21

同被引文献134

引证文献12

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部