期刊文献+

Optimal Three Cylinder Inequality at the Boundary for Solutions to Parabolic Equations and Unique Continuation Properties 被引量:1

Optimal Three Cylinder Inequality at the Boundary for Solutions to Parabolic Equations and Unique Continuation Properties
原文传递
导出
摘要 Let Γ be a portion of a C^(1,α) boundary of an n-dimensional domain D. Letu be a solution to a second order parabolic equation in D x (-T, T) and assume that u = 0 on Γ x(-T, T), 0 ∈ Γ. We prove that u satisfies a three cylinder inequality near Γ x (—T, T). As aconsequence of the previous result we prove that if u(x,t) = O (|x|~k ) for every t ∈ (-T,T) andevery k ∈ N, then u is identically equal to zero. Let Γ be a portion of a C^(1,α) boundary of an n-dimensional domain D. Letu be a solution to a second order parabolic equation in D x (-T, T) and assume that u = 0 on Γ x(-T, T), 0 ∈ Γ. We prove that u satisfies a three cylinder inequality near Γ x (—T, T). As aconsequence of the previous result we prove that if u(x,t) = O (|x|~k ) for every t ∈ (-T,T) andevery k ∈ N, then u is identically equal to zero.
机构地区 DiMaD
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第2期351-380,共30页 数学学报(英文版)
基金 This work is partially supported by MURST,Grant No.MM01111258
关键词 unique continuation parabolic equations stability estimates unique continuation parabolic equations stability estimates
  • 相关文献

参考文献14

  • 1Riesz, F., Nagy, B. Sz.: Functional Analysis, Dover Publications Inc., New York, 1990.
  • 2Vessella, S.: Three cylinder inequalities and unique continuation properties for parabolic equations. Rend.Mat. Acc. Lincei, 13(9), 107-120 (2002).
  • 3Canuto, B., Rosset, E., Vessella, S.: Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear.
  • 4Canuto, B., Rosset, E., Vessella, S.: A Stability Result in the Localization of Cavities in a Thermic Conducting Medium. Preprint n. 59, 2001, Laboratoire de Mathematiques Appliquees Universite de Versailles.
  • 5Isakov, V.: Inverse Problems for Partial Differential Equations, Springer, New York, 1988.
  • 6Alessandrini, C., Beretta, E., Rosset, E., Vessella, S.: Optimal stability for inverse boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci., XXIX(4), 755 806 (2000).
  • 7Escauriaza, L., Fernandez, J.: Unique continuation for parabolic operators. Ark. for Matematik, to appear.
  • 8Adolfsson, V., Escauriaza, L.: C^1,α domains and unique continuation at the boundary. Comm. Pure Appl.Math., L, 935-969 (1997).
  • 9Hormander, L.: Linear Partial Differential Operators, Springer, New York, 1963.
  • 10Isakov, V.: Carleman type estimate in an anisotropic case and applications. J. of Diff. Equat., 105(2),217-238 (1993).

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部