期刊文献+

(Z_2)~k-Actions with Fixed Point Set of Constant Codimension 2~k+2 被引量:4

(Z_2)~k-Actions with Fixed Point Set of Constant Codimension 2~k+2
原文传递
导出
摘要 Let J_(*,k)~r 2. denote the ideal in MO_* of cobordism classes containing arepresentative that admits (Z_2)~k-actions with a fixed point set of constant codimension r. Inthis paper we determine J_(*,k)^(2^k+2) and J_(*,3)^(2^3+1). Let J_(*,k)~r 2. denote the ideal in MO_* of cobordism classes containing arepresentative that admits (Z_2)~k-actions with a fixed point set of constant codimension r. Inthis paper we determine J_(*,k)^(2^k+2) and J_(*,3)^(2^3+1).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第2期409-412,共4页 数学学报(英文版)
基金 Supported by the National Natural Sciences Foundation of P.R.China(No.10371029) the Natural Sciences Foundation of Hebei Province(No.103144) the Doctoral Foundation of Hebei Normal University(No.103257)
关键词 cobordism class (Z_2)~k-actions fixed point set dold manifold cobordism class (Z_2)~k-actions fixed point set dold manifold
  • 相关文献

参考文献8

  • 1Pergher, P. L. Q.: (Z2)^2-actions with fixed point set of constant codimension. Topology Appl., 46, 55-64(1992).
  • 2Shaker, R. J.: Constant codimension fixed sets of commuting involutions. Proc. Amer. Math. Soc., 121,275-281 (1994).
  • 3Shaker, R. J.: Dold manifolds with (Z2)^κ-action. Proc. Amer. Math. Soc., 123, 955-958 (1995).
  • 4Wang, Y. Y., Wu, Z. D., Ma, K.: (Z2)^κ-actions with fixed point set of constant codimension 2^κ + 1. Proc.Amer. Math. Soc., 128(5), 1515-1521 (2000).
  • 5Liu, Z., Wu, Z. D.: (Z2)^2-actions with fixed point set of constant codimension 6. Journal of Mathematical Research and Exposition, (in Chinese), to appear.
  • 6Richard L. W. Brown, Inmmersions and embeddings up to cobordism. Can. J. Math., XXIII(6), 1102-1115(1971).
  • 7Wang, Y. Y., Wu, Z. D., Meng Z. J., Commuting Involutions with Fixed Point Set of Variable Codimension.Acta Mathematica Sinica, English Series, 17(3), 425-430 (2001).
  • 8Kosniowski, C., Stong, R. E.: (Z2)^κ-Actions and characteristic numbers. Indiana Univ. Math. J., 28(5),725-743 (1979).

同被引文献3

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部