期刊文献+

基于FCM的无监督纹理分割 被引量:7

Unsupervised Texture Segmentation Based on FCM
下载PDF
导出
摘要 由于图像所包含的纹理类别数目常常是未知的,因此无监督的纹理分类相比于有监督的纹理分类更具有实际的应用价值.从聚类的本质定义出发,采用了一种基于类内、类间距离比值的聚类有效性判别函数RII.为了减弱随着聚类数目的递增对判别函数带来的影响,分别采用最大类内距和最小类间距替代类内、类间距离之和作为判别因子.由于FCM的收敛速度与初始类别数目有一定的相关性,再引入收敛速度作为聚类有效性函数的惩罚因子,给出了一个新的判别函数nRII,有效地预防过分类现象,准确地评价了聚类结果. As the cluster number of texture in an image is always unknown, the unsupervised classification is more valuable than the supervised classification Based on the concept of a good cluster which should have the minimum intra-cluster distance and the maximum inter-clusters distance, the ratio of intra-cluster to inter-cluster distance is applied as the validity function However, the increase of initial cluster number will influence the sum of cluster diameters and the inter-cluster separation distance Therefore the maximum cluster diameter and minimum inter-cluster separation distance are provided instead, which is influenced by the initial cluster number more slightly and shows the essential of the cluster structure Due to the relationship of FCM convergent speed with the initial cluster number, the convergent speed is introduced as the penalization factor to the validity function and a new validity function nRII is proposed Compared with other validity functions, the nRII validity function can effectively prevent the over-clustering problem and give out a more exact estimation of the cluster number
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第5期862-867,共6页 Journal of Computer Research and Development
基金 航空科学基金项目(02I53073) 南昌航空工业学院开放实验室基金项目(KG200104001)
关键词 模糊C均值聚类 聚类有效性 小波包框架 fuzzy c-means cluster validity wavelet packets frame
  • 相关文献

参考文献9

  • 1James C. Bezdek, Nikhil R. Pal. Cluster validation with generalized dunn's index. The 2nd New Zealand International Two-Stream Conf. Artificial Neural Networks and Expert Systems, Dunedin, New Zealand, 1995.
  • 2I. Gath, A. B. Geva. Unsupervised optimal fuzzy clustering.IEEE Trans. Pattern Analysis and Machine Intelligence, 1989,11(7): 773~781.
  • 3X.L. Xie, G. Beni. A validity measure for fuzzy clustering.IEEE Trans. Pattern Analysis and Machine Intelligence, 1991,13(8): 841~847.
  • 4Mahamadou Idrissa, Marc Acheroy. Texture classification using Gabor filters. Pattern Recognition Letters, 2002, 23(9): 1095~1102.
  • 5Isabelle Bloch. On fuzzy distances and their use in image processing under imprecision. Pattern Recognition, 1999, 32(11): 1873~1895.
  • 6James C Bezdek, Nikhil R Pal. Some new indexs of cluster validity. IEEE Trans. Systems, Man and Cybernetics, Part B,1998, 28(3): 301~315.
  • 7James C. Bezdek, Richard J. Hathway, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans. System, Man, and Cybernetics, 1987, 17(5): 873~877.
  • 8A.K. Jain, F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 1991, 24(12): 1167~1186.
  • 9Jiang Xiaoyue, Zhao Rongchun. Texture segmentation based on incomplete wavelet packet frame. The 2nd Int'l Conf. Machine Learning and Cybernetics, Xi'an, 2003.

同被引文献51

  • 1杨德刚.基于模糊C均值聚类的网络入侵检测算法[J].计算机科学,2005,32(1):86-87. 被引量:26
  • 2李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 3余鹏,封举富.基于高斯混合模型的纹理图像分割[J].中国图象图形学报(A辑),2005,10(3):281-285. 被引量:27
  • 4李彬,陈武凡.基于模糊聚类空间模型的非均匀MR图像分割[J].医疗卫生装备,2006,27(2):3-4. 被引量:7
  • 5BONIFAZI G, MASSACCI P,MELONI A. A 3D forth surface rende- ring and analysis technique to characterize flotation processes[ J]. In- ternational Journal of Mineral Processing ,2002,64 ( 3 ) : 153-161.
  • 6MOOLMAN D W, EKSTEEN J J, ALDRICH C, et al. The significance of flotation froth appearance for machine vision control [ J ]. Interna- tional Journal of Mineral Processing, 1996,48 (3-4) : 135-158.
  • 7BARTOLACCI G, PELLETIER P, TESSIER J, et al. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I: flotation control based on froth textural characteristics [ J ]. Minerals Engineering,2006,19 ( 6- 8 ) :734-747.
  • 8GUO Zhen-hua, ZHANG Lei, ZHANG D. Rotation invariant texture classification using LBP variance (LBPV) with global matching[ J ]. Pattern Recognition ,2010,43(3 ) :706-719.
  • 9OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray- scale and rotation invariant texture classification with local binary pat- tern[J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence ,2002,24 (7) :971-987.
  • 10丁震,胡钟山,杨静宇,唐振民,邬永革.一种基于模糊聚类的图象分割方法[J].计算机研究与发展,1997,34(7):536-541. 被引量:28

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部