期刊文献+

基于延拓法的电力系统稳定模型中二维参数局部分岔边界的计算 被引量:27

CONTINUATION METHOD TO COMPUTE TWO-DIMENSIONAL PARAMETER LOCAL BIFURCATIONS BOUNDARY IN POWER SYSTEM STABILITY DIFFERENTIAL-ALGEBRAIC EQUATION MODEL
下载PDF
导出
摘要 该文提出表示微分-代数模型中的奇异性、鞍结点和霍普夫分岔的代数方程以便应用延拓法来求解获得二维参数的分岔边界。该方程保留了电力系统稳定微分-代数模型的形式不变,也未涉及到矩阵求逆或行列式值的计算,同时该方程也具有直接法计算分岔时速度快的优点。其缺点是方程的维数增加了。应用所提方法计算了一简单电压稳定和一多机电力系统稳定模型中的二维参数局部分岔边界,并和实域仿真进行比较,结果表明该方法是准确可行的。 Based on two numerical methods used in bifurcation analysis, this paper proposed a set of algebraic equations that could be solved by continuation method to calculate two-dimensional singularity induced, saddle-node and Hopf bifurcations boundary in differential- algebraic equations (DAE). These algebraic equations keep the form of power system stability DAE model unchanged, also they need neither to inverse matrix nor compute the determinant, in the meantime they have the same advantage of rapid convergent speed as the direct method. The drawback is that their dimension is increased.. The method was applied in a simple voltage stability power system and a multi-machine power system to calculate their two-dimensional parameter local bifurcation boundary The results are checked with those obtained by time domain simulation method to illustrate its capability and accuracy.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第8期13-16,共4页 Proceedings of the CSEE
基金 国家自然科学基金项目(50307007)。~~
关键词 局部分岔 稳定模型 延拓法 计算 边界 二维 电力系统稳定 多机电力系统 代数模型 霍普夫分岔 代数方程 矩阵求逆 电压稳定 奇异性 鞍结点 行列式 直接法 微分 应用 Power system stability Differential-algebraic equations Two-dimensional local bifurcations, Direct method Continuation method (indirect method)
  • 相关文献

参考文献13

二级参考文献47

  • 1蔡泽祥,倪以信.考虑暂态稳定紧急控制的扩展等面积法[J].中国电机工程学报,1993,13(6):20-26. 被引量:12
  • 2段献忠,何仰赞,陈德树.有载调压变压器与电压稳定性关系的动态分析[J].电力系统自动化,1995,19(1):14-19. 被引量:21
  • 3程浩忠,馀利野直人.电力系统电压崩溃临界状态和快速算法[J].中国电机工程学报,1996,16(3):165-170. 被引量:7
  • 4Seydel R. Practical bifurcation and stability analysis - from equilibrium to chaos [M]. New York: Springer-Verlag, 1994.
  • 5Govaerts W. Numerical methods for bifurcations of dynamical equilibria[M]. Philadelphia: SIAM, 1999.
  • 6Moore G, Spence A. The calculation of turning points of nonlinear equations [J]. SIAM Journal of Numerical Analysis, 1980, 17: 567-576.
  • 7Van Cutsem T. Voltage instability: phenomena, countermeasures and analysis methods [J]. Proceedings of IEEE, 2000, 88(2): 208-227.
  • 8Kundur P. Power system stability and control [M]. New York:McGraw-Hill, Inc., 1994.
  • 9Carson W Taylor. Power system voltage stability [M]. New York:McGraw-Hill, Inc., 1994.
  • 10Tamura Y, Mori H, Iwamoto S. Relationship between voltage stability and multiple load flow solutions in electric power systems [J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(5): 1115-1125.

共引文献227

同被引文献320

引证文献27

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部