期刊文献+

爆炸冲击效应数值仿真中的几项关键技术 被引量:16

Key Technologies of Numerical Simulation on Explosion and Impact Effect
下载PDF
导出
摘要 爆炸冲击效应的数值仿真,涉及到大变形、高应变率以及材料的破坏,传统的拉格朗日或欧拉方法在解决该问题均有很大的局限性,为克服或消除这些局限性,先后发展了网格重分、ALE、CEL、FLM、SPH等方法,各有所长,但尚未完全解决;而在实际工程中,切合实际的岩土介质本构关系则是数值仿真的关键;高效并行计算与可视化则是数值仿真的必由之路。 The numerical simulation on explosion and impact effect involves large deformation, high strain rate, and material damage. And traditional computational methods, Lagrangian and Eulerian, are limited in dealing with these problems. Therefore new numerical methods such as remesh, ALE, CEL, SPH, and so on are well developed. In practical explosion and impact engineering analysis, the right rock and soil constitutive law is the key. The high effective parallel computing and scientific visualization are the only way for numerical simulation.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第5期1059-1062,1067,共5页 Journal of System Simulation
关键词 数值仿真 爆炸效应 冲击效应 计算方法 本构关系 并行计算 numerical simulation explosion effect impact effect compute method constitutive law parallel compute
  • 相关文献

参考文献21

  • 1邓国强,杨秀敏.SPH方法在爆炸冲击效应计算中的应用[J].防护工程,2004,26(6):46-49. 被引量:5
  • 2钟万勰 程耿东.跨世纪的中国计算力学,科技进步与学科发展[M].北京:中国科学技术出版社,1998..
  • 3袁明武.我国计算力学软件的现状与思考[A]..现代力学与科技进步[C].北京:清华大学出版社,1997..
  • 4俞茂宏.工程强度理论[M].北京:高等教育出版社,2002..
  • 5M P Baker, D Bock, R Heiland. Visualization of Damaged Structures[C]. NCSA, University of Illinois, March 1998.
  • 6H. U. Mair, Review: hydrocodes for structural response to underwater explosions[J]. Shock and Vibration,1999, 6:81-96.
  • 7MSC.Software Corporation, MSC. Dytran. USER'S manual[R], Version4.7, Santa Ana, 2000.
  • 8J.O.Hallquist, Lsdyna3d theoretical manual [R]. California, Livermore, 1998.
  • 9D Grady. Shock equation of state properties of concrete[R]. Sandia national laboratories, 1996.
  • 10Y D Murray, Brett A lewis. Numerical simulation of damage in concrete[R]. Alexandria, Defence nuclear agency, 1995.

二级参考文献8

  • 1[1]Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977,88(10):1013-1024.
  • 2[2]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J].Monthly Notices R Astron Soe, 1977,181(4):375-389.
  • 3[3]Libersky L D, Petsehek A G. Smoothed particle hydrodynamics with strength of materials[J]. Advances in the Free Lagrange Method, Lecture Notes in Physics, 1990,395(3):248-257.
  • 4[4]Gingold R A, Monaghan J J. Shock simulation by the particle method SPH[J]. J Comput Phys, 1983,52(4) :374-389.
  • 5[5]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[A]. 14th Int Symposium on Ballistics[C]. USA: American Defense Prepareness Association, 1993:591-600.
  • 6[6]Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. Int J Impact Engng, 1996,18(5) :466-476.
  • 7[7]Marsh S P. LASL shock Hugoniot data[M]. California: University of California Press, 1980.
  • 8[8]Beissel S R, Johnson G R. An abrasion algorithm for projectile mass loss during penetration[J]. Int J Impact Engng, 2000,24(2) :103-116.

共引文献36

同被引文献104

引证文献16

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部