期刊文献+

Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay,China 被引量:16

Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China
下载PDF
导出
摘要 Dilution experiments were performed to examine the growth rate and grazing mortality rate of size-fractionated phytoplankton at three typical stations, inside and outside the bay, in the spring and summer of 2003 in the Jiaozhou Bay, China. In spring, the phytoplankton community structure was similar among the three stations, and was mainly composed of nanophytoplankton, such as, Skeletonema costatum and Cylindrotheca closterium. The structure became significantly different for the three stations in summer, when the dominant species at Stas A, B and C were Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, C. affinis, C. debilis, Coscinodiscus oculus-iridis and Paralia sulcata respectively. Tintinnopsis beroidea and T. tsingtaoensis were the dominant species in spring, whereas the microzooplankton was apparently dominated by Strombidium sp. in summer. Pico- and nanophytoplankton had a relatively greater growth rate than microzooplankton both in spring and summer. The growth rate and grazing mortality rate were 0.18~0.44 and 0.12~1.47 d-1 for the total phytoplankton and 0.20~0.55 and 0.21~0.37 d-1 for nanophytoplankton in spring respectively. In summer, the growth rate and grazing mortality rate were 0.38~0.71 and 0.27~0.60 d-1 for the total phytoplankton and 0.11~1.18 and 0.41~0.72 d-1 for nano- and microphytoplankton respectively. The carbon flux consumed by microzooplankton per day was 7.68~39.81 mg/m3 in spring and 12.03~138.22 mg/m3 in summer respectively. Microzooplankton ingested 17.56%~92.19% of the phytoplankton standing stocks and 31.77%~467.88% of the potential primary productivity in spring; in contrast, they ingested 34.60%~83.04% of the phytoplankton standing stocks and 71.28%~98.80% of the potential primary productivity in summer. Pico- and nanophytoplankton appeared to have relatively greater rates of growth and grazing mortality than microphytoplankton during the experimental period. The grazing rate of microzooplankton in summer was a little bit greater than that in spring because of the relatively higher incubation temperature and different dominant microzooplankton species. Microzooplankton preferred ingesting nanophytoplankton to microphytoplankton in spring, while they preferred ingesting picophytoplankton to nanophytoplankton and microphytoplankton in summer. Compared with the results of dilution experiments performed in various waters worldwide, the results are in the middle range. Dilution experiments were performed to examine the growth rate and grazing mortality rate of size-fractionated phytoplankton at three typical stations, inside and outside the bay, in the spring and summer of 2003 in the Jiaozhou Bay, China. In spring, the phytoplankton community structure was similar among the three stations, and was mainly composed of nanophytoplankton, such as, Skeletonema costatum and Cylindrotheca closterium. The structure became significantly different for the three stations in summer, when the dominant species at Stas A, B and C were Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, C. affinis, C. debilis, Coscinodiscus oculus-iridis and Paralia sulcata respectively. Tintinnopsis beroidea and T. tsingtaoensis were the dominant species in spring, whereas the microzooplankton was apparently dominated by Strombidium sp. in summer. Pico- and nanophytoplankton had a relatively greater growth rate than microzooplankton both in spring and summer. The growth rate and grazing mortality rate were 0.18~0.44 and 0.12~1.47 d-1 for the total phytoplankton and 0.20~0.55 and 0.21~0.37 d-1 for nanophytoplankton in spring respectively. In summer, the growth rate and grazing mortality rate were 0.38~0.71 and 0.27~0.60 d-1 for the total phytoplankton and 0.11~1.18 and 0.41~0.72 d-1 for nano- and microphytoplankton respectively. The carbon flux consumed by microzooplankton per day was 7.68~39.81 mg/m3 in spring and 12.03~138.22 mg/m3 in summer respectively. Microzooplankton ingested 17.56%~92.19% of the phytoplankton standing stocks and 31.77%~467.88% of the potential primary productivity in spring; in contrast, they ingested 34.60%~83.04% of the phytoplankton standing stocks and 71.28%~98.80% of the potential primary productivity in summer. Pico- and nanophytoplankton appeared to have relatively greater rates of growth and grazing mortality than microphytoplankton during the experimental period. The grazing rate of microzooplankton in summer was a little bit greater than that in spring because of the relatively higher incubation temperature and different dominant microzooplankton species. Microzooplankton preferred ingesting nanophytoplankton to microphytoplankton in spring, while they preferred ingesting picophytoplankton to nanophytoplankton and microphytoplankton in summer. Compared with the results of dilution experiments performed in various waters worldwide, the results are in the middle range.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第2期85-101,共17页 海洋学报(英文版)
基金 supported by the National Natural Science Foundation of China under contract Nos 40206020 and 40306025 the National Fundamental Rescarch Program of China under contract No.2001CB409702.
关键词 MICROZOOPLANKTON PHYTOPLANKTON selective grazing carbon to chlorophyll-a ratio grazing pressure Jiaozhou Bay microzooplankton, phytoplankton, selective grazing, carbon to chlorophyll-a ratio, grazing pressure, Jiaozhou Bay
  • 相关文献

参考文献11

二级参考文献64

共引文献420

同被引文献272

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部