期刊文献+

关于两个线性递推序列

Note on Two Bindered Linear Recurrence Relations
下载PDF
导出
摘要 用发生函数的办法考察了线性递推关系bi,j=αbi-1,j+βbi,j-1和ci,j=αci,j-1+βci,j-1+βαci-1,j-1的特殊情况所确定的矩阵B和C,得到了矩阵B,C的分解B=P[α](b0,0I+ωE)PT[β],C=P[α]DPT[β]和相应行列式的值。发现B,C与Pascal矩阵P有着紧密的联系。 A interesting factorizations of matrix B with entries , ?1,,?1=+ijijijb α bβb and matrix whose entries satisfy , ?1,,?1?1,?1=++ijijijijc αc βcαβc in special case are derived as ( )[][]0,0αωβTB = PbI+EP and [α ][β]TC = PDP respectively. In addition, we solve the corresponding determinants and find that B and C are related to Pascal matrix P.
出处 《重庆三峡学院学报》 2005年第3期66-69,共4页 Journal of Chongqing Three Gorges University
基金 重庆市教委资助项目(2002)
关键词 递推关系 发生函数 矩阵分解 Recurrence relation, Generating function, Matrix factorization
  • 相关文献

参考文献3

  • 1Chenon G S, al. Matrices determined by a linear recurrence relation among entries[J].Linear Algebra&Applications, 2003,373:89-99.
  • 2Zakrajsek H, Petkovsek M. Pascal-like determinants are recursive[J].Advances in Applied Mathematics, 2004,33:431-450.
  • 3Gould H W. Combinatorial Identities[M].Morgantowm, West Virginia, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部