期刊文献+

精确运动弹性动力学分析方法的显式表达 被引量:4

Explicit Expression for Precise Kineto-elastodynamic Analysis
下载PDF
导出
摘要 该文从柔性体的虚位移原理出发,建立精确运动弹性动力分析方法(Kineto ElastodynamicAnalysis)的一种新表达,其运动方程计入刚体大运动与弹性变形的非线性耦合项,整体坐标系下的单元运动方程采用显式表达,避免了在方程中采用旋转变换矩阵的导数,且方程形式及系统方程的组装方式都与基于瞬时结构假设的一般运动弹性动力分析方法保持相同,只需在一般运动弹性动力分析方程中添加几项便可得到该文方程。最后,给出平面连杆机构系统的详细表达。 From the principle of the virtual displacement of a flexible body, a new equation for kineto-elastodynamic analysis is developed. It takes into account the nonlinear coupling effects between the gross motion and the elastic deformation. The element equation is explicitly expressed with global variables. It does not contain the time derivative of the transformation matrix. Meanwhile, it has the same form as the general kineto-elastodynamic analysis which is based on the assumption of the instantaneous structure, and the assembly of the system equations is the same too. The general kineto-elastodynamic analysis equation can be directly developed into the new one just by adding several terms. A particularized expression is developed for the analysis of planar link mechanism, and an example is given to illustrate it at last.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2005年第2期153-157,共5页 Journal of Nanjing University of Science and Technology
基金 国家'8 6 3'计划资助项目 ( 2 0 0 3AA4 0 4 0 6 0 )
关键词 运动弹性动力分析 显式表达 平面连杆机构 kineto-elastodynamic analysis explicit expression planar link mechanism
  • 相关文献

参考文献9

  • 1刘又午.多体动力学在机械工程领域的应用[J].中国机械工程,2000,11(1):144-149. 被引量:37
  • 2Shabana A A. Dynamics of multibody systems[M]. Cambridge: Cambridge university press,1998.
  • 3Kane T R, Ryan R R,Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, 1987,10(2):139-151.
  • 4Lowen G G, Jandrasits W G. Survey of investigations into the dynamic behavior of mechanisms containing links with distributed mass and elasticity [J]. Mechanism and Machine Theory,1972, 7(1):3-17.
  • 5Erdman A G, Sandor G N. A general method for kineto-elastodynamic analysis and synthesis of mechanisms [J].ASME Journal of Engineering for Industry,1972,94 (4):1 193-1 205.
  • 6Nath P K, Ghosh A. Kineto-elastodynamic analysis of mechanisms by finite element method [J]. Mechanism and Machine Theory,1980, 15(3): 179-197.
  • 7Naganathan G, Sohi A H. Nonlinear modeling of kinematic and flexibility effects in manipulator design [J]. Transactions of the ASME , Journal of Mechanisms, Transmissions, and Automation in Design, 1988,110(9):243-253.
  • 8Liou F W, Erdman A G.Analysis of a high-speed flexible four-bar linkage:Part I-Formulation and solution [J]. Transactions of the ASME , Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989,111(1):35-41.
  • 9陆佑方 王彬.具有有限弹性变形部件的多体系统动力分析[J].吉林工业大学学报,1988,50(2):1-12.

二级参考文献9

共引文献36

同被引文献39

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部