期刊文献+

贝叶斯多元线性样条在电力负荷中期预测中的应用 被引量:2

Application of Mid-Term Load Forecasting Based on BMLS
下载PDF
导出
摘要 贝叶斯多元线性样条BMLS是基于贝叶斯框架下的分段线性回归技术,实现了回归面边界光滑性。本文分析了BMLS方法的原理,结合EUNITE网络2001年举办的电力负荷预测比赛提供的数据进行了相关数据分析,建立了相应的电力负荷中期预测模型。我们使用BMLS方法对两种训练样本集进行了训练,并计算出预测期的预测值,取得了理想的预测结果,并结合其它方法对试验结果进行了分析。文章最后总结了BMLS方法用于预测的特点,并与其它方法,如相关向量机等进行了比较。使用BMLS的模拟近似平均技术进行预测可以实现较好的精度。 Bayesian Multivariate Linear Splines(BMLS) is a piecewise linear regression using Bayesian methods to achieve boundary smoothness between pieces. After discussing privary technologies used for BMLS, it is proposed to be used for mid-term load forecasting in this paper. After analyzing data from EUNITE-network-sponsoring competition, we did experiments choosing different train samples, getting good results. We compare experimental results with other methods and present some explanations. In the end of the paper we do summaries on BMLS advantages and disadvantages, comparing with other methods, such as the Relevance Vector Machines, etc. Predications with analogy approximation averaging used in BMLS, can achieve better performances.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第4期15-18,22,共5页 Microelectronics & Computer
关键词 电力负荷 中期预测 贝叶斯模型 多元线性样条 Electricity load, Mid-term forecasting, Bayesian model, Multivariate linear splines
  • 相关文献

参考文献9

  • 1C C HOLMES, Mallick B K. (2001) Bayesian Regression with Multivariate Linear Splines. A Revised Version has Now Appeared in J. Roy. Statist. Soc. Series B, 2001, 63(1): 3~18.
  • 2C C HOLMES, D G T. DENISON. (2003)Classification with Bayesian MARS, Machine Learning, 2003, 50: 159~173.
  • 3Green P J. (1995) Reversible Jump Markov Chain Monte Carlo computation and Bayesian Model Determination.Biometrika, 1995, 82: 711~732.
  • 4World-wide Competition within the EUNITE Network,http://neuron.tuke.sk/competition/.
  • 5B -J Chen, Chih-Jen Lin. Load Forecasting Using Support Vector Machines http://www.csie.ntu.edu.tw/~cjlin/papers.html.
  • 6Dalibor Zivcak. Electricity Load Forecasting Using ANN,http://neuron.tuke.sk/competition/reports/DaliborZivcak.pdf.
  • 7H S Hippert, C E Pedreira, and R C Souza. Neural Networks for Short-term Load Forecasting: a Review and Evaluation. IEEE Transactions on Power Systems, 2001.
  • 8S Rahman and O Hazim. A Generalized Knowledge-based Shortterm Load-forecasting Technique. IEEE Transactions on Power Systems, May 1993.
  • 9刘遵雄,张德运,孙钦东,徐征.基于相关向量机的电力负荷中期预测[J].西安交通大学学报,2004,38(10):1005-1008. 被引量:22

二级参考文献10

  • 1韩家炜 范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001,8..
  • 2Park D C, El-Sharkawi M A, Marks R J,et al.Electric load forecasting using an artificial neural network [J]. IEEE Transactions on Power Systems, 1991, 6(2): 442-449.
  • 3Kholtanzad A, Afkhami-Rohani R, Lu T L, et al. ANNSTLF: a neural network based electric load forecasting system[J]. IEEE Trans on Neural Networks, 1997, 8(4): 835-846.
  • 4Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting: a review and evaluation [J]. IEEE Transactions on Power Systems, 2001,16 (1): 44-55.
  • 5Chen B J, Lin C J. Load forecasting using support vector machines[EB/OL]. Http://www.csie.ntu.edu.tw/-cjlin/papers.html,2003-07-20.
  • 6Otto P. World-wide competition within the EUNITE network [EB/OL]. Http://neuron.tuke.sk/competition/,2003-05-13.
  • 7Tipping M E. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1(3):211-244.
  • 8Bishop C M, Tipping M E. Variational relevance vector machine [A]. The 16th Conf on Uncertainty in Artificial Intelligence, Morgan Kaufmann, USA,2000.
  • 9Chen S, Gunn S R, Harris C J. The relevance vector machine technique for channel equalization application [J]. IEEE Trans on Neural Networks, 2002, 12(6): 1 529-1 532.
  • 10Zivcak D. Electricity load forecasting using ANN [EB/OL].http://neuron.tuke.sk/competition/reports/DaliborZivcak.pdf,2003-06-12.

共引文献21

同被引文献9

  • 1张雷,常天庆,朱斌,王庆胜.多步预测方法在故障检测中的应用[J].微电子学与计算机,2005,22(3):200-202. 被引量:2
  • 2雷绍兰,孙才新,周湶,张晓星.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29. 被引量:93
  • 3Matthias Seeger. Gaussian process for machine learning [J].International Journal of Neural Systems, 2004, 14 (2) :69 - 106.
  • 4Nabney Ian T. NETLAB- algorithms for pattern recognition[M]. New York: Springer Verlag, 2001.
  • 5Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase - space reconstruction using a geometrical construction [ J ]. Phys Rev A, 1992 (45) : 3403 - 3411.
  • 6MacKay D J C. Introduction to gaussian processes [ R ]. UK Tecnnical Report, Cavendish Laboratory, Cambridge University, 1998.
  • 7Philip Hans Franses.Time series models for business and economic forecasting[M].中国人民大学出版社,2001
  • 8何镇邦,李桂荣.概率论与数理统计附随机过程[M].兵器工业出版社,1992
  • 9David S.Moore statistics:concepts and controversies (fifth edition)[M].W.H.Freeman and Copany,2001

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部