期刊文献+

人颅骨粘弹性的分数阶模型研究 被引量:10

Study on A Fractional Model of Viscoelasticity of Human Cranial Bone
下载PDF
导出
摘要 利用Riemann_Liouville的分数阶微积分算子及理论 ,将标准的整数阶St.Venant力学模型推广至它的分数阶形式 ;根据Boltzmann迭加原理 ,应用离散化求逆Laplace变换的方法以及H_Fox函数 ,得出了分数阶St.Venant模型的应力松弛函数和蠕变函数的解析表达式 ,并分别与现有的人颅骨粘弹性实验数据相拟合。结果表明 ,分数阶的St.Venant模型比标准的整数阶St.Venant模型能够更有效地刻画人颅骨的粘弹性的应力~应变本构特性。 In this paper, the standard St. Venant model with integer order was generalized by applying the Riemann-Liouville fractional calculus operators and its theory. The analytical expressions of the stress relaxation function and creep function for the obtained fractional St. Venant model were given by using the Boltzmann superposition principle and discrete inverse Laplace transform method. H-Fox functions played a dominant role in solving the problem. The analytical solutions of the fractional model were fitted with the experimental data for viscoelasticity of human cranial bone. The results showed that the fractional St. Venant model was more efficient than the standard St. Venant model with integer order in describing the stress - strain constitutive relations for the viscoelasticity of human cranial bone.
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2005年第1期12-16,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (10 2 72 0 67) 教育部博士点基金资助项目(2 0 0 3 0 42 2 0 46)。
关键词 粘弹性 分数阶St.Venant模型 分数阶微积分 应力松弛 蠕变 Biomedical engineering Brain Creep Functions Laplace transforms Strain rate Stress relaxation Viscoelasticity
  • 相关文献

参考文献3

二级参考文献16

  • 1施德广,中国生物医学工程学报,1985年,4卷,3期,148页
  • 2Mingyu Xu,Wenchang Tan.Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J].Science in China Series A: Mathematics.2001(11)
  • 3C. Friedrich.Relaxation and retardation functions of the Maxwell model with fractional derivatives[J].Rheologica Acta.1991(2)
  • 4Friedrich,C.,Schiessel,H.,Blumen,A.Constitutive behavior modeling and tractional derivatives[].Advances in the Flow and Rheology of Non-Newtonian Fluids.1999
  • 5Heymans,N.Modelling non-linear and time-dependent behaviour of viscoelastic materials using hierarchical models[].Progress and Trends in Rheology V:Proceedings of the Fitth European Rheology Conference.1998
  • 6Nonnenmacher,T.F.Fractional relaxation equations for viscoelasticity and related phenomena[].Rheological Modeling:Thermodynamical and Statistical Approaches.1991
  • 7Mathai,A.M,Saxeha,R.K.The H-function with applications in statistics and other disciplines[]..1978
  • 8Fung,Y.C.Biomechanics:Mechanical properties of living tissues[]..1981
  • 9Glockle W G,Nonnenmacher T F.Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity[].Macromolecules.1991
  • 10Friedrich C H R.Relaxation and retardation functions of the Maxwell model with fractional derivatives[].Rheologica Acta.1991

共引文献43

同被引文献77

引证文献10

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部