期刊文献+

可降解生物材料聚乳酸羟基乙酸仿生矿化的实验研究 被引量:8

Study on Biomimic mineralization of Poly Lactide-co-Glycolide
下载PDF
导出
摘要 目的 :通过对聚乳酸 羟基乙酸共聚物 (polylactide co glycolide ,PLGA)的仿生矿化 ,表面改性 ,以提高其细胞粘附性 ;探讨影响仿生矿化的因素和条件 ,为进一步制备组织工程化人工骨提供依据和实验基础。方法 :PLGA膜经碱性溶液水解处理后 ,应用高温显微镜测量材料表面润湿角的变化 ;碱处理后的PLGA膜和三维多孔PLGA分别在模拟体液 (SimulatedBodyFluid ,SBF)中矿化 14d ,在 1 5倍SBF中矿化 9d ,应用扫描电镜进行矿化物形貌观察 ,X射线能谱分析钙磷比值 ,X射线衍射仪和傅立叶转换红外光谱仪行矿化物物相分析。结果 :PLGA经碱性溶液水解处理后表面亲水性明显增强 ,在SBF及 1 5倍SBF中矿化后表面可以形成明显的矿化物 ;矿化物的形态与矿化液的浓度有关 ;矿化物主要成分为羟基磷灰石 (HA) ,含有碳酸根成分 ,钙磷比为 1 5 3,类似于人骨无机质。结论 :PLGA仿生矿化是制备结构及性质类似骨基质人工骨的可行方法。 Objective: To construct a mineralized poly(lactide-co-glycolide) by biomimetic approach in order to improve the property of PLGA surface, and to develop biomaterials for orthopaedic tissue regeneration. Methods: PLGA films and 3-D porous PLGA were subjected to a hydrolysis treatment with alkaline solution prior to mineralization. The wettability of PLGA films were measured with high temperature microscope. PLGA hydrolyzed for 60 minutes were mineralized in SBF for 14 days or in 1.5 folds of the standard SBF for 9 days. The morphology, composition, and phase of mineral grown on PLGA were analyzed with SEM, FTIR and XRD. Results: The wettability of PLGA films was enhanced after being hydrolyzed by alkaline solution. The morphology of the mineral depended on the solution characteristics. The main component of mineral was hydroxyapatite containing a little of CO32- group, the Ca/P ratio was 1.53, similar to the major mineral component of bone tissue. Conclusion: Mineralization of PLGA by biomimic approach is a suitable way to construct bioactive artificial bone.
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2005年第2期145-149,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (3 0 170 2 70 3 0 2 0 0 0 63 )。
关键词 聚乳酸-羟基乙酸 仿生 矿化 模拟体液 Biomaterials Fourier transform infrared spectroscopy Hydrolysis Hydroxyapatite Morphology Polymers Scanning electron microscopy Tissue X ray diffraction analysis
  • 相关文献

参考文献10

  • 1Kokubo T.Novel biomedical materials based on glasses[J].Materials Science Forum.1999,293:65-82.
  • 2Heuer AH,Fink DJ,Laraia VJ, et al. Innovative materials processing strategies:a biomimetic approach[J].Science,1992,255(5048):1098-1105.
  • 3Kokubo T,Kim HM,Kawashita M, et al.Process of calcification on artificial materials[J].Z Kardiol,2001,90(Suppl 3):86-91.
  • 4Tanahashi M,Matsuda T.Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid[J].J Biomed Mater Res,1997,34(3):305-315.
  • 5Oyane A,Kawashita M,Nakanishi K, et al.Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions[J].Biomaterials,2003,24(10):1729-1735.
  • 6Camplbell AA,Fryxell GE,Linehan JC, et al.Surface-induced mineralization:a new method for producing calcium phosphate coatings[J].J Biomed Mater Res,1996,32(1):111-118.
  • 7Liu GJ,Miyaji F,Kokubo T, et al.Apatite-organic polymer composites prepared by a biomimetic process:improvement in adhesion of the apatite layer to the substrate by ultraviolet irradiation[J].J Mater Sci Mater Med,1998,9(5):285-290.
  • 8HidekiAoki.Science and Medical Applications of Hydroxyapatite[M].Tokyo:Takayama Press System Center Co.,Inc,1991,165-177.
  • 9Gower LB,Odom DJ.Deposition of Calcium Carbonate Films by a Polymer-Induced Liquid-Precursor Process[J].J Crystal Growth,2000,210(4):719-734.
  • 10Murphy WL,Mooney DJ.Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata[J].J Am Chem Soc,2002,124(9):1910-1917.

同被引文献83

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部