期刊文献+

半固态镁合金中液相的凝固方式及组织形貌 被引量:10

Solidification Modes and Morphology of Liquid Phase of Semi-solid Mg Alloy
下载PDF
导出
摘要 采用快速液淬方法分析研究了AZ91D镁合金半固态液相的凝固方式和组织形貌,结果表明:镁合金半固态液相的凝固方式与冷却速度所决定的过冷度有重要关系。在液淬快冷的条件下,液相先析出α相,部分依附于初生固相晶粒结晶生长,部分在液相中独立形核生长。较大的过冷度使α相长成“毛刺状”或树枝晶状。共晶凝固按离异生长和共生生长两种方式进行,离异生长形成粗大的晶界β相,共生生长形成层片状组织。初生固相晶粒中形成的小液池,其凝固方式和结晶组织与晶间液相基本相同,但由于液相量少,共晶凝固主要以离异方式进行。 The solidification modes and morphology of liquid phase of semi-solid AZ91D Mg alloy by liquid quenching were investigated. The results indicated that the solidification modes of liquid phase of semi-solid Mg alloy were in close relationship with the degree of supercooling determined by cooling rate. Under conditions of liquid quenching, liquid phase precipitated a-phase firstly. Some a-phase clung to primary solid grains and grew up, others nucleated independently and grew up in the liquid phase. The big degree of supercooling caused that a-phase grew into spear-shape or dendrite. Eutectic solidification developed by divorced growth and coupled growth. Divorced growth generated bigger β-phase in grain boundaries. Coupled growth generated lamellar structures. The solidification modes and morphology of the small liquid bathes inside the primary solid grains were almost the same as that of the liquid phase between the grains. Due to smaller liquid phase, eutectic solidification modes of small liquid bathes developed by divorced growth mostly.
出处 《铸造》 EI CAS CSCD 北大核心 2005年第5期442-445,共4页 Foundry
基金 陕西省教育厅产业化培育项目(02JC33)
关键词 半固态镁合金 液淬快冷 凝固方式 凝固组织 semi-solid Mg alloy liquid quenching solidification mode solidification structure
  • 相关文献

参考文献9

  • 1胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.109.
  • 2郑来苏.铸造合金及其熔炼[M].西安:西北工业大学出版,1994..
  • 3余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288. 被引量:406
  • 4Flemings Merton C. Behavior of metal alloys in the semisolid state [J]. Metallurgical Transactions A, 1991, 22A (4): 957-980.
  • 5Jae Chan Choi, Hyung Jin Park. Microstructure characteristics of aluminum 2024 by cold working in the SIMA process [J]. Journal of Materials Processing Technology, 1998, 5 (82): 107-116.
  • 6吴炳尧,戴挺.半固态触变成形坯料二次加热技术分析[J].特种铸造及有色合金,2000,20(6):58-61. 被引量:23
  • 7Evangelos Tzimas,Antonios Zavaliangos Evolution of nearequiaxed microstructure in the semisolid states[J].Materials Science and Engineering,2000,A289(7):228-240.
  • 8Midson Stephen P, Hormiston Brad J, Olivier Gabis. The influence of key parameters on the uniformity of slug reheating during semisolid metal forming [J]. Die Casting Engineer, 1999, B22(10): 62-65.
  • 9赵振东.淬火时工件各因素对冷却特性的影响[J].国外金属热处理,1996,17(6):25-29. 被引量:1

二级参考文献54

  • 1黄良余.铝硅合金变质机理的新发展和新观点(上)[J].特种铸造及有色合金,1995,15(4):30-32. 被引量:46
  • 2曹富荣,崔建忠,雷方,乐启炽.超轻镁合金的研究历史与发展现状[J].材料工程,1996,24(9):3-5. 被引量:27
  • 3Lu L, Froyen L. Mechanically alloyed high strength Mg5Al10.3Ti4.7B alloy[J]. Script Mater, 1999, 40(10): 1117- 1122.
  • 4Eliezer D, Aghion E, Froes F H. The science and technique of magnesium alloy[J]. Advan Perfor Mater, 1998, (5): 201-203.
  • 5Ku K. Magnesium Alloys and Their Applications[M]. Oberursel, FRG: DGM Information sgesellschaft, 1992.
  • 6Beeke J, Fischer G, Schemme K. Magnesium alloys and their applications [A]. Proceedings Volume Sponsored by Volkswagen AG Werkstoff Informationsgesellschaft[C]. 2000.
  • 7Emley. Principles of Magnesium Technology [M].Oxford: Pergamon, 1966. 122.
  • 8Das S K, Chang C F. Magnesium Alloys and their Applications[M]. Oberursel, FRG DGM Information sgesellschaft, 1992.
  • 9Suzuki M, Sato H, Maruyama K. Creep behavior and deformation microstructures of Mg-Y alloy at 550K [J]. Mater Sci Eng, 1998, 252A:248- 255.
  • 10Tateishi H, Inone M, Kojima Y. Recycling of thin walled AZ91D magnesium alloy die-casting with paint finishing[J]. Light metals, 1998, 48(1): 19- 23.( in Japanese).

共引文献626

同被引文献98

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部