期刊文献+

时序规则发现及其算法 被引量:5

Time-series Rules Discovery and Its Algorithm
下载PDF
导出
摘要 该技术先把要考察的时间序列转换成子时间序列数据,然后对这些子时间序列数据进行挖掘,从中提取关联规则。给出了时间序列关联规则的挖掘算法,并举例说明该算法是有效的和可行的。 The mining technique is to convert the time-series data waiting for analysis into a series time sub-series data first, and then to excavate these time sub-series data and extract the implicit association rules from them. The algorithm for mining time-series association rules is given.Finally,an example is used as a case to illustrate the technique to be effective and feasible.
出处 《计算机应用研究》 CSCD 北大核心 2005年第6期23-24,63,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60274030) 广东省科技攻关项目(C31801) 广东省科技计划资助项目(2003C50302)
关键词 子时间序列 数据挖掘 规则发现 算法 Time Sub-series Data Mining Rules Discovery Algorithm
  • 相关文献

参考文献8

  • 1G Zhang, E B Patuwo, M Y Hu. Forecasting with Artificial Neural Networks: The State of the Art [ J ]. Int. J. Forecasting, 1998,(14) : 35-62.
  • 2I Ginzburg, D Horn. Combined Neural Networks for Time Series Analysis[J]. Adv. Neural Inf. Process. Systems, 1994, (6):224-231.
  • 3D K Wedding, H K J Cios. Time Series Forecasting by Combining RBF Networks, Certainty Factors and the Box-Jenkins Model [ J].Neurocomputing, 1996, (10) : 149-168.
  • 4K Homik, M Stinchicombe, H White, Using Multi-layer Feedforward Networks for Universal Approximation [ J ]. Neural Networks, 1990,(3) : 551-560.
  • 5Lon-Mu Liu, Siddhartha Bhattacharyya,et al. Data Mining on Time Series: An Illustration Using Fast-food Restaurant Franchise Data[J]. Computational Statistics & Data Anlysis, 2001, (37): 455-476.
  • 6Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[ J]. Neurocomputing, 2003, (50) : 159-175.
  • 7Lon-Mu Liu. Identification of Seasonal ARIMA Models Using a Filtering Method[J]. Commun. Statist. , 1989 A(18) :2279-2288.
  • 8J T Luxhoj, J O Riis, B Stensballe. Ahybrid Econometric-network Modeling Approach for Sales Forecasting[J]. Int. J. Prod. Econ. ,1996,(43) : 175-192.

同被引文献15

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部