期刊文献+

微波等离子体在不锈钢上制备抵抗蛋白质吸附表面(英文) 被引量:2

Preparation protein-resistant surfaces on bio-stainless steel by microwave cold plasma
下载PDF
导出
摘要 本文利用微波低温等离子体表面改性技术,对医用316L型不锈钢进行改性以增强其表面抵抗蛋白质粘附的能力,提高生物相容性。经过X射线光电子能谱和衰减全反射傅立叶变换红外光谱的分析和表征,发现沉积的涂层为类PEG结构,表面主要聚集大量—CH2—CH2—O键,并且氧原子和碳原子在金属和有机物界面层之间形成共价键结合。血浆蛋白吸附试验显示,与改性前相比,等离子体沉积在不锈钢表面的类PEG涂层可以有效抵抗蛋白质粘附。 Microwave cold plasma surface modification technique was investigated to enhance biocompatibility of bio-stainless steel type 316 L by resisting proteins attach to surfaces. Based on high resolution XPS and ATR-FTIR spectrum, this coating was a thin poly(ethylene glycol)-like film deposited in a microwave cold-plasma of tetraglyme conditions and built up mainly of -CH2-CH2-O- linkages on surfaces, and oxygen and carbon formed covalent bond on the interfacial layer between metal and organic films. Plasma protein was adsorbed onto control and stainless steel surfaces, and the relative adsorbed amount of proteins on the surfaces was evaluated by ESCA. The adsorbed protein on modified-surface decreased rapidly compared with control and exhibited particularly effective in preventing protein adsorption.
出处 《功能材料》 EI CAS CSCD 北大核心 2005年第5期775-778,共4页 Journal of Functional Materials
基金 SupportedbyNationalNaturalScienceFoundationofChina(NSFC)(50374064,50434050) Hubeiprovincialdepartmentofeducation:ScienceResearchProject(D200515009)
关键词 不锈钢 微波低温等离子体 制备 薄膜 蛋白质粘附 Adsorption Biocompatibility Biomaterials Coatings Fourier transform infrared spectroscopy Implants (surgical) Polymerization Proteins Surface treatment X ray photoelectron spectroscopy
  • 相关文献

参考文献8

  • 1Park J B. Biomaterials Science and Engineering [M]. New York:Plenum Press, 1984. 112-135.
  • 2Park J B, Bronzino J D. Biomaterials: Principals and applications [M]. Boca Raton:CRC Press, 2002. 529-798.
  • 3Oh H K, Young C N, KiDP. [J]. J Appl Polym Sci, 1999, 71: 631-641.
  • 4Ratner B D, Hoffman A S. Thin Films, Grafts, and Coatings[A]. Ramer B D, Hoffman A S, Schoen F J,et al. Biomaterials Science, an Introduction to Materials in Medieine[C]. San Diego: Academic Press, 1996. 105-110.
  • 5Prim K L, Whitesides G M. [J]. Science, 1991, 252: 1164-1166.
  • 6AgnesRD, Eileen BS, AmyCLW. [J]. J Appl Polym Sci, 2001, 81: 3425-3438.
  • 7Yang J, Wang J H. [J]. J Wuhan Institute Chem Tech, 2003, 25: 47-50.
  • 8Denes Z Q, Hua W J, Simonsick D J. [J]. J Appl Polym Sci, 1999, 71: 1627-1639.

同被引文献19

  • 1杨隽,汪建华.低温等离子体技术制备有机薄膜的研究进展[J].表面技术,2004,33(6):1-3. 被引量:3
  • 2杨隽,汪建华.低温等离子体对NiTi形状记忆合金的表面改性[J].材料工程,2005,33(2):10-12. 被引量:2
  • 3顾汉娜,徐国风.高技术有机高分子材料进展:血液相容性高分子生物材料[M].北京:化学工业出版社,1996.333-340.
  • 4Nagaoka S, Nakso A. [J]. Biomaterials, 1990,11 (2): 119- 121.
  • 5顾汉卿,徐国风.生物医学材科学[M].天津:天津科技翻译出版公司,1993.395-398.
  • 6Maechling-Strasser C, Dejardin P, Oalin J C, et al. [J]. J Biomed Mater Res, 1989,23,1384-1393.
  • 7Amiji M,Park K. [J]. Biomaterials,1992,13(10) ,689-692.
  • 8Seongbong J, Kinam P. [J]. J Bioactive and Compatible Polym, 1999,14: 457-473.
  • 9Sharma S,Johnson R W, Dcsai T A, et al.[J]. Appl Surf Sci, 2003,206 : 218-229.
  • 10Tseng Y C, Park K. [J]. J Biomed Mater Res, 1992,26, 373-391.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部