期刊文献+

移动机器人数学模型的近似线性化

Study on approximate linearization and stabilization via state feedback for WMR math model
下载PDF
导出
摘要 针对机器人控制领域中一类多输入多输出(MIMO)仿射非线性系统,提出了一种基于平衡流形的近似线性化状态反馈镇定算法,并用此算法解决了一类完整约束轮式移动机器人(WMR)的镇定问题.仿真分析表明,此方法不仅能够实现系统的镇定,而且降低了因平衡工作点变动给系统稳定性带来的影响,同时也大大地简化了对非线性系统的综合设计过程,具有良好的控制效果和实用性. Aiming at a MIMO nonlinear system within the domain of robust controlling,an approximate (linearizing) stability via state feedback algorithm based on balanced flow pattern is proposed to solve the (stability) problem for a mobile robot with holonomic constraints.Simulation analyses show that this (algorithm) can not only realize the system stability,but also decrease the influence caused by the fluctuation with balanced point.In addition,it can simplify the synthesis design process for a nonlinear system.The (simulation) results demonstrate the efficiency and the practicability of the method.
出处 《沈阳工业大学学报》 EI CAS 2005年第2期200-204,共5页 Journal of Shenyang University of Technology
基金 清华大学智能技术与系统国家重点实验室资助(0101) 中国科学院沈阳自动化研究所机器人学重点实验室资助(RL200110)
关键词 近似线性化 平衡流形 状态反馈镇定 李括号 完整约束 移动机器人 approximate linearization balanced flow pattern stabilization via state feedback Li brackets holonomic constraints mobile robot
  • 相关文献

参考文献10

  • 1刘开周,董再励,孙茂相.一类全方位移动机器人的不确定扰动数学模型[J].机器人,2003,25(5):399-403. 被引量:9
  • 2Champetier C, Mouyon P, Reboulet C. Pseudolinearization of multi-input nonlinear systems [A]. Proc.23rd IEEE Conf. on Decision and Control [C]. Las Vegas, USA, 1985:593 - 598.
  • 3Bortoff S A, Spong M. Pseudolinearization of the acrobot using spline functions[ A]. Proc. 31st IEEE Conf. on Decision and Control [ C]. Tucson, Arizona, USA, 1992:96-97.
  • 4Hauser J. Nonlinear control via uniform system approximation [J]. Sys. Contr. Lett, 1991,17: 145 - 154.
  • 5Baumann W T, Rugh W J. Feedback control of nonlinear systems by extended linearization [J]. IEEE Trans A C, 1986, 31:40 - 46.
  • 6Hunt L R, Turi. A new algorithm for constructing approximate transformations for nonlinear systems [J]. IEEE Trans. A C, 1993, 38:1553 - 1556.
  • 7Jakubczyk B, Respondek W. On linearization of control systems [ J ]. Bull. Acad. Polon. Sci., Math., 1980,28:517 - 522.
  • 8Rokui M R, Khorasani K. Experimental results on discrete-time nonlinear adaptive tracking control of a flexible-link manipulator [ A ]. Systems, Man and Cybernetics [C]. Part B, IEEE Transactions, Canada.2000:151 - 164.
  • 9Soroush M, Zambare N. Nonlinear output feedback control of a class of polymerization reactors [A]. on.Control Systems Technology [ C ]. IEEE Transactions, USA, 2000:310 - 320.
  • 10Sung J J, Seo J H. Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system [ A]. Control Systems Technology[C]. IEEE Transactions, J South Korea, Jan, 1997:135 - 144.

二级参考文献4

  • 1Dong Sun, James k Mills. Adaptivv learning control of robotic system with model uncertainty[A]. Proceedings of the 1998 IEEE International Conf[C]. on Robotics & Automation, 1998.1847 -1853.
  • 2Stvven M Lavall, Seth A. Hutchinson. An objective-based framework for motion planning under sensing and control uncertainty[J]. Int. J.Robotics Rcsearch1, 1998,7( 1 ) : 19 -42.
  • 3Khatib M, Bouilly B, Simeon T, hatila R. Indoor navigation with uncertainty using sense-based motions[ A ]. Proceedings of the 1997 IEEE International Conference on Robotics & Automation[C]. 1997.3379 - 3384.
  • 4Fraichard Th, Mermond R. Path planning with uncertainty for car-like robots [A].IEEE Int. Conf. on Robot and Automation[C]. 1998.27 - 32.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部