期刊文献+

求解布尔与非线性数值约束相混合的约束问题(英文) 被引量:4

Solving Boolean Combinations of Nonlinear Numerical Constraints
下载PDF
导出
摘要 布尔与数值变量相混合的约束问题有着广泛的应用,但是当约束中的数值变量间存在非线性关系时该问题求解起来十分困难.目前的许多求解方法都是不完备的,即这些方法不能完全肯定某些包含非线性数值表达式的约束是否能够成立.针对这种问题,提出了将非线性数值约束转化为特殊形式的优化问题,采用全局优化算法对其进行求解的方法.已经实现了一个基于此方法的原型工具.实验结果表明,该方法能够有效地求解非线性混合约束问题,并且总能够得到该约束条件是否可满足的结果. Constraints involving Boolean and numerical variables are used widely, but it is difficult to solve especially when they contain nonlinear numerical expressions. Many existing methods for solving such constraints are incomplete. A new method is presented in this paper to solve Boolean combinations of nonlinear numerical constraints completely. This method transforms the nonlinear constraints into a special-formed optimization problem to solve them. A prototype tool is implemented, and some experiments are made. The experimental results show that the method is effective.
作者 季晓慧 张健
出处 《软件学报》 EI CSCD 北大核心 2005年第5期659-668,共10页 Journal of Software
基金 国家杰出青年科学基金~~
关键词 约束求解 非线性数值约束 全局优化 区间方法 Algorithms Global optimization Nonlinear systems
  • 相关文献

参考文献15

  • 1Zhang J, Specification analysis and test data generation by solving Boolean combination of numeric constraints. In: Tse TH, Chen TY, eds. Proc. of the First Asia-Pacific Conference on Quality Software. Los Alamitos: IEEE Computer Society, 2000. 267-274.
  • 2Zhang J, Wang X. A constraint solver and its application to path feasibility analysis. International Journal of Software Engineering& Knowledge Engineering, 2001,11(2):139-156.
  • 3Hong H. RISC-CLP(Real): Logic programming with non-linear constraints over reals. In: Benhamou F, Colmerauer A, eds.Constraint Logic Programming: Selected Research. Cambridge: The MIT Press, 1993. 133-159.
  • 4Swedish Institute of Computer Science (SICS). SICStus Prolog User's Manual, Release 3.10.1, 2003.
  • 5Daniel JW. Newton's method for nonlinear inequalities. Numerical Mathematics, 1973,21:381-387.
  • 6Maranas CD, Floudas CA. Finding all solutions of nonlinearly constrained systems of equations. Journal of Global Optimization,1995,7(2):143-182.
  • 7Dantzig G. Linear Programming and Extensions. New Jersey: Princeton University Press, 1963.94-111.
  • 8Horst R, Paralos PM. Handbook of Global Optimization. Boston: Kluwer Academic Publishers, 1995.751-824.
  • 9Moore RE. Methods and Applications of Interval Analysis. Philadelphia: SIAM Publication, 1979,
  • 10Hammer R., Hocks M, Kulisch U, Ratz D. C++ Toolbox for Verified Computing I. Heidelberg: Springer, 1995. 312-342.

同被引文献23

  • 1高小山,蒋鲲.几何约束求解研究综述[J].计算机辅助设计与图形学学报,2004,16(4):385-396. 被引量:43
  • 2季晓慧,黄拙,张健.约束求解与优化技术的结合[J].计算机学报,2005,28(11):1790-1797. 被引量:9
  • 3季晓慧,张健.一种求解混合约束问题的快速完备算法[J].计算机研究与发展,2006,43(3):551-556. 被引量:2
  • 4J. Zhang. Specification analysis and test data generation by solving Boolean combination of numeric constraints, The 1st Asia-Pacific Conf. Quality Software, Hong Kong, 2000.
  • 5R. E. Moore. Methods and Applications of Interval Analysis,Philadelphia: SIAM Publ., 1979.
  • 6E. Hansen. Global Optimization Using Interval Analysis. New York: Marcel Dekker, 1992.
  • 7A. V. Levitin. Introduction to the Design and Analysis of Algorithms. Boston: Addison-Wesley, 2003.
  • 8S. M. Robinson. Extension of Newton's method to nonlinear functions with values in a cone. Numerical Mathematics, 1972,19(4): 341-347.
  • 9J. W. Daniel. Newton's method for nonlinear inequalities.Numerical Mathematics, 1973, 21(5) : 381 - 387.
  • 10R. Hammer, M. Hocks, U. Kuliseh, et al. C++ Toolbox for Verified Computing Ⅰ. Berlin: Springer, 1995.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部