期刊文献+

独立指数分布期望参数的Γ极小极大估计

Γ-minimax estimation for exponential distribution parameter
下载PDF
导出
摘要 在参数的部分先验信息已知的条件下所获得的Γ极小极大估计是一种介于有确定的先验分布函数的Bayes估计和无先验信息的极小极大估计之间的估计方法,因而更切合实际。以往的研究对二项分布参数的线性组合及负二项分布的参数在某些限制条件下的Γ极小极大估计做了讨论。本文给出了独立指数分布的期望参数在一般的先验矩限制下的Γ极小极大估计,同时讨论了两种特殊情况,即给出了在仅有先验二阶矩限制下的以及有确定的先验一阶矩和二阶矩限制下的指数分布的期望参数的Γ极小极大估计。 Compared with the Bayesian estimation with a determined prior distribution and the Minimax estimation with zero-information prior distribution, a better one is the Γ-estimation for the parameter of a distribution when only parts of the information for its prior distribution is know. And it is more practicable. In recent study, the Γ- minimax estimation for the linear combination of parameters of binomial distributions and for the parameter of a negative binomial distribution were discussed subject to the certain restriction. As for the independent exponential distribution, the Γ- minimax estimation for the expectation are derived when the first and second rank matrix of prior distribution are restricted generally. Furthermore two special cases are studied, one is only the second rank matrix of prior distribution is restricted, and another is definite values for the first and second rank matrix of prior distribution.
出处 《沈阳航空工业学院学报》 2005年第2期71-73,共3页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 Г极小极大估计 BAYES估计 指数分布 先验分布 无信息先验分布 Γ-minimax estimation Bayesian estimation exponential distribution prior distribution zero-information prior distribution
  • 相关文献

参考文献4

  • 1De Rowen T.A, Toby.J.Mitchell A G\-1-minimax estimator of binomical probabilities[J]. Journal of the American statistical assosciation (1974) 69: 231~233.
  • 2陈兰祥.二项分布参数的线性组合的Γ-极小极大估计[J].同济大学学报(自然科学版),1989,17(1):143-147. 被引量:1
  • 3陈兰祥.负二项分布参数的Γ极小极大估计[J].数理统计与应用概率,1993,8(1):62-68.
  • 4James O.Berger.Statistical Decision Theory and Bayesian Analysis Second edition[M].1986.

二级参考文献1

  • 1陈希孺,数理统计引论,1982年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部