摘要
The two-way shape memory effect(TWSME) in a Ti36Ni49Hf15 high temperature shape memory alloy(SMA) was systematically studied by bending tests. In the TiNiHf alloy, the martensite deformation is an effective method to get two-way shape memory effect even with a small deformation strain. The results indicate that the internal stress field formed by the bending deformation is in the direction of the preferentially oriented martensite variants formed during the bending deformation. Upon cooling the preferentially oriented martensite variants form under such an oriented stress field, which should be responsible for the generation of the two-way shape memory effect. Proper training process benefits the formation of the oriented stress field, resulting in the improvement of the two-way shape memory effect. A maximum TWSME of 0.88% is obtained in the present alloy.
The two-way shape memory effect(TWSME) in a Ti_(36)Ni_(49)Hf_(15) high temperature shape memory alloy(SMA) was systematically studied by bending tests. In the TiNiHf alloy, the martensite deformation is an effective method to get two-way shape memory effect even with a small deformation strain. The results indicate that the internal stress field formed by the bending deformation is in the direction of the preferentially oriented martensite variants formed during the bending deformation. Upon cooling the preferentially oriented martensite variants form under such an oriented stress field, which should be responsible for the generation of the two-way shape memory effect. Proper training process benefits the formation of the oriented stress field, resulting in the improvement of the two-way shape memory effect. A maximum TWSME of 0.88% is obtained in the present alloy.
出处
《中国有色金属学会会刊:英文版》
CSCD
2005年第2期340-343,共4页
Transactions of Nonferrous Metals Society of China
关键词
钛镍铪合金
高温性质
形状记忆合金
稳定性
TiNiHf alloy
high temperature shape memory alloy
two-way shape memory effect
training
(stability)