期刊文献+

基于高阶Cauchy-Born准则的单壁碳纳米管本构模型

A higher order Cauchy-Born rule based constitutive model of SWNT
下载PDF
导出
摘要 提出了一种基于高阶Cauchy-Born准则建立单壁碳纳米管本构模型的方法。通过引入高阶变形梯度,合理地修正了传统Cauchy-Born准则在描述纳米管变形几何关系时所存在的缺陷。利用原子间相互作用势以及能量等效原理,得到了基于广义连续介质模型的单壁碳纳米管的本构关系。由此得到的本构参数不仅与变形梯度张量F,而且与其梯度F相关,因此是一种广义连续介质模型。利用这样的本构模型,本文还对单壁碳纳米管的杨氏模量进行了预测,并与采用其他方法得到的结果进行了对比,从而证实了所提出方法的有效性。 Based on the higher order Cauchy-Born rule, a constitutive model of SWNT is established. In the present model, by including the second order deformation gradient tensor in the kinematic description, the limitation of the standard Cauchy-Born rule for the modeling of nanoscale crystalline films can be alleviated with less computational efforts. Based on the established relationship between the atomic potential and the macroscopic continuum strain energy density, analytical expressions for the tangent modulus tensors are derived. With the use of this model and the Tersoff-Brenner atomic potential for carbon, the size dependent mechanical properties of carbon nanotube are predicted. The obtained results agree well with those obtained by other experimental, atomic modeling and continuum concept based studies.
出处 《计算力学学报》 CAS CSCD 北大核心 2005年第2期135-140,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10225212 10472022) 教育部长江学者计划项目资助.
关键词 碳纳米管 纳米力学 Cauchy—Born准则 超弹性 本构模型 carbon nanotube nanomechanics Cauchy-Born rule hyperelastic constitutive model
  • 相关文献

参考文献15

  • 1Yakobson B I, Brabec C J, Bernholc J. Nanomecha-nics of carbon tubes: Instabilities beyond linear response[J]. Physical Review Letters, 1996,76:2511-2514.
  • 2Liu J Z, Zheng Q S, Jiang Q. Effect of a rippling mode on resonance of carbon nanotubes[J]. Physical Review Letters, 2001,86:4843-4846.
  • 3Zhang P, Huang Y, Geubelle P H, et al. The elastic modulus of single-wall carbon nanotubes: a conti-nuum analysis incorporating interatomic potentials[J]. International Journal of Solids and Structures, 2002,39:3893-3906.
  • 4Gao H J, Klein P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds[J]. Journal of the Mechanics and Physics of Solids,1998,46:187-218.
  • 5Jiang H, Zhang P, Liu B, et al. The effect of nano-tube radius on the constitutive model for carbon nanotubes[J]. Computational Materials Science,2003,28:429-442.
  • 6Arroyo M, Belytschko T. An atomistic-based finite deformation membrane for single layer crystalline films[J]. Journal of the Mechanics and Physics of Solids, 2000,50:1941-1977.
  • 7Sunyk R, Steinmann P. On higher gradients in co-ntinuum-atomic modeling[J]. International Journal of Solids and Structures, 2003,40:6877-6896.
  • 8Tersoff J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988,37:6991-7000.
  • 9Brenner D W. Empirical potential for hydrocarbons for use in simulation the chemical vapor deposition of diamond films[J]. Physical Review B, 1990,42:9458-9471.
  • 10Leamy M J, Chung P W, Namburu R. On an exact mapping and a higher-order Born rule for use in analyzing graphene carbon nanotubes[A]. Proceedings of the 11th Annual ARL-USMA Technical Symposium[C]. November 5, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部