期刊文献+

功能磁共振图像处理的ICA方法综述 被引量:9

Independent Component Analysis of Functional MRI Data: An Overview
下载PDF
导出
摘要 能够进行无损伤探测的功能核磁共振成像(functionalmagneticresonanceimaging,fMRI)技术使人们又多了一种研究神经活动的有力工具,但传统的数据分析方法还不能很好地揭示fMRI数据中所包含的丰富信息,而独立分量分析(independentcomponentanalysis,ICA)作为一种新近出现的数据处理方法,则不仅可以从fMRI数据分析中得出一些传统方法所未发现的结果,并且这种方法不需要传统方法的那种预先假设的先验模型,只依赖于数据本身即可提取其中所包含的信息。为了使人们对这一技术有一概略了解,首先对ICA方法的基本原理及其在fMRI数据处理中的应用进行了综述,并针对不同特点的fMRI数据详细讨论了如何选择不同的算法;然后ICA方法与传统方法相比存在的优越性进行了介绍,最后提出了此方法当前存在的一些问题及处理思路,并展望了其在fMRI数据处理中的发展趋势,可以认为,ICA是一种很有发展潜力的功能磁共振数据处理新方法。 Functional magnetic resonance imaging is a non-invasive powerful tool for people to investigate the neuronal activity in vivo. But the abundant information contained in the fMRI data could not be fully mined by the traditional methods. As a new promising approach, independent component analysis revealed some components in fMRI data which can not be detected by the conventional methods. Depending only on data set itself, this exploratory analysis technique doesn’t need the a priori model used by the conventional methods. The primary principle and the application on the fMRI data were reviewed followed by the detailed discussion on the selection of the ICA algorithms. Compared to the traditional methods, the advantages of ICA could be found through the application results from many papers. Some issues were discussed and the trends of this method applied to the fMRI data were proposed by the author in the final part of this paper, which support the standpoint that this new potential approach could be used to mining the fMRI data.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第5期561-566,i001,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(90209030) 国家重点基础研究发展规划资助项目(G1999054006)
关键词 ICA 图像处理 综述 analysis fMRI 核磁共振成像 数据分析方法 独立分量分析 数据处理方法 传统方法 损伤探测 神经活动 先验模型 基本原理 发展趋势 发展潜力 技术 信息 算法 independent component analysis, functional magnetic resonance imaging(fMRI), blood oxygenation level dependent(BOLD)
  • 相关文献

参考文献37

  • 1Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[ J]. Proceedings of the National Academy of Sciences,1992, 89(12): 5675 ~5679.
  • 2Ogawa S, Tank D W, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging [ J ]. Proceedings of the National Academy of Sciences, 1992, 89(13): 5951 ~5955.
  • 3Brown G D,Yamada S,Sejnowski T J. Independent component analysis at the neural cocktail party [ J ]. Trends in Neurosciences,2001, 24(1) :54 ~63.
  • 4Stone J V. Independent component analysis: an introduction [ J].Trends in Cognitive Sciences, 2002, 6 (2) :59 ~ 64.
  • 5Hyvarinen A, Karhunen J, Oja E. Independent component analysis [ M ]. New York: John Wiley & Sons INC. press, 2001.
  • 6Jung T P, Makeig S, McKeown M J, et al. Imaging brain dynamics using independent component analysis [ J ]. Proceeding of IEEE,2001, 89:1107 ~ 1122.
  • 7McKeown M J, Makeig S, Brown G G, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Human Brain Mapping, 1998, 6(3) :160 ~ 188.
  • 8Friston K J. Modes or models: a critique on independent component analysis for fMRI [ J ]. Trends in Neurosciences, 1998, 2 (10):373 ~375.
  • 9McKeown M J, Makeig S, Brown G, et al. Modes or models: A critique on independent component analysis for fMRI-reply to commentary by Prof Friston[ J]. Trends in Cognitive Sciences, 1998,2(10) :375.
  • 10McKeown M J, Jung T P, Makeig S, et al. Spatially independent activity patterns in functional MRI data during the stroop color-naming task[ J]. Proceedings of the National Academy of Sciences, 1998,95(3) :803 ~810.

二级参考文献31

  • 1唐一源,张武田,马林,翁旭初,李德军,何华,贾富仓.默读汉字词的脑功能偏侧化成像研究[J].心理学报,2002,34(4):333-337. 被引量:38
  • 2孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 4Chen H,IEEE APBME,2000年,189页
  • 5Xu Y,中国生物医学工程学报,1999年,8卷,3期,41页
  • 6Karhunen J,IEEE Trans Neural Networks,1997年,8卷,3期,486页
  • 7章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..
  • 8Friston KJ, Phillips J, Chawla D, et al. Revealing interactions among brain systems with nonlinear PCA [J].Hum Brain Mapp, 1999,8:92~97.
  • 9McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Human Brain Mapping, 1998,6:160~188.
  • 10Comon P. Independent component analysis-A new concept[J]? Signal Processing, 1994,36:287~314.

共引文献161

同被引文献62

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部