摘要
通过对Euler空间的Hamilton原理的详细的数学分析,把两个林家翘约束变换为一个约束;并以变分所得欧拉方程为基础,从另一个角度推导出了动量方程;通过对变分边界项的分析,构造出了自然边界条件,进而得出计算二维流场的赝势函数变分原理。
Two Linkaqiao constraints have been changed into one through analyzing Hamilton principle in Euler space in detail. On the basis of Euler equations given in this paper, we derived the momentum equations from another viewpoint. Natural boundary conditions were constructed by analyzing boundary terms of variational principle, and further variational principle of pseudo-potential function for calculating two-dimension flow field was derived.
出处
《济南大学学报(自然科学版)》
CAS
2005年第2期166-168,共3页
Journal of University of Jinan(Science and Technology)
关键词
流体力学变分原理
赝势函数
涡势函数
自然边界条件
variational principle
pseudo-potential function
vortex-potential function
natural boundary condition