期刊文献+

水溶性有机碳对菲吸附系数测定的影响 被引量:9

Influence of Water Soluble Organic Carbon on Determination of Adsorption Coefficient of Phenanthrene
下载PDF
导出
摘要 以菲为代表性化合物,利用摇瓶吸附实验研究土壤水分配体系中溶解态有机碳(DOC)对有机碳归一化吸附系数测定结果的影响.研究结果表明,在吸附系数测定过程中土壤溶出的DOC会导致水相中菲的浓度显著增加,很大程度上改变了菲在土水两相中的分配平衡,从而导致吸附系数的测定误差.根据文献报道的菲与DOC相互作用常数(Kdoc)以及实测体系中DOC浓度可以对实验数据进行校正,以获得更为可靠的结果,本文对线性吸附系数和Freundlich吸附系数分别进行了校正,得到有机碳归一化的吸附系数lgKoc为4 . 35 ,lgKFoc为7. 0 1 .校正前后的lgKoc与文献数据的对比从侧面反映出在水土体系的吸附研究中可能普遍包含因不同浓度DOC影响所造成的偏差,考虑这种影响对于准确比较不同研究得到的吸附参数具有重要意义. Organic carbon normalized sorption coefficient of phenanthrene in soils was determined in a batch experiment. The influence of the presence of dissolved organic carbon (DOC) on sorption coefficient was also investigated. The results demonstrated that, the DOC dissolved from the soil would enhance the water solubility of phenanthrene and change the sorption behavior of phenanthrene between soil and water, consequently leading to an underestimation of sorption coefficient. When the binding coefficient of DOC and phenanthrene (K_ doc) from the literatures was adopted for correction of measured data, a better estimation of sorption coefficient could be achieved. In this study, lgK_ oc and lgK_ Foc were 4.35 and 7.01, respectively. Comparison between the uncorrected/corrected lgK_ oc and the literature data could partially reflect the deviation caused by the influence from various concentrations of DOC may occur in many sorption studies in water-soil system. It was significant to compare the sorption coefficient derived from different studies considering this influence.
出处 《环境科学》 EI CAS CSCD 北大核心 2005年第3期162-166,共5页 Environmental Science
基金 国家重点基础研究发展规划 (973 )项目 (2 0 0 3CB415 0 0 4) 国家自然科学基金资助项目 (4 0 3 3 2 0 15 40 0 2 110 1)
关键词 水溶性有机碳 土壤 吸附等温线 water soluble organic carbon phenanthrene soil sorption isotherm
  • 相关文献

参考文献19

  • 1何耀武,区自清,孙铁珩.多环芳烃类化合物在土壤上的吸附[J].应用生态学报,1995,6(4):423-427. 被引量:39
  • 2周岩梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报,2003,23(2):216-223. 被引量:51
  • 3陈华林,陈英旭.沉积物对菲和五氯酚的吸附性能[J].环境化学,2003,22(2):159-165. 被引量:7
  • 4Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water [J]. Environ. Sci. Technol. , 1983, 17(4):227-231.
  • 5Karickhoff S W, Brown D S, Sxzott T A. Sorption of hydrophobic pollutants on natural water sediments [J]. Water Res., 1979, 13: 241-248.
  • 6Lee C L, Kuo L J. Quantification of the dissolved organic mattereffect on the sorption of hydrophobic organic pollutant:application of an overall mechanistic sorption model [J].Chemosphere, 1999, 38(4) : 807-821.
  • 7McGroddy S E, Farrington J W. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts [ J ]. Environ. Sci.Technol., 1995, 29(6): 1542-1550.
  • 8McGroddy S E, Farrington J W, Gschwend P M. Comparison of the in situ and Desorption Sediment-water Partitioning of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls[J]. Environ. Sci. Technol. , 1996, 30(1): 172-177.
  • 9Fostera G D, Roberts Jra E C, Gruessnerb B, Velinskyc D J.Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA) [J]. Appl.Geochem. , 2000, 15(7): 901-915.
  • 10Carmo A M, Hundal L S, Thompson M L. Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent Freundlich coefficients [ J ]. Environ. Sci.Technol. , 2000, 34(20): 4363-4369.

二级参考文献15

  • 1朱`瑶.赵报国界面化学基础[M].北京:化学工业出版社,1996.9.
  • 2[1]Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbent [J]. Environ Sci Technol, 1997, 31(12): 3341-3347
  • 3[2]Weber Jr W J, Leboeuf E J, Young T M, et al. Contaminant interactions with geosorbent organic matter: insights drawn from polymer sciences [J]. Wat. Res., 2001, 35(4): 853-868.
  • 4[3]Chiou C T, Peters L J, Freed V H. A physical concept of soil water equilibriums for nonionic organic compounds [J]. Science, 1979, 206(4420): 831-832
  • 5[4]Huang W L, Young T M, Schlautman M A, et al. A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model [J]. Environ. Sci. Technol., 1997, 31(6): 1703-1710
  • 6[5]Huang W L, Weber Jr W J. A distributed reactivity model for sorption by soils and sediments. 11. Slow concentration-dependent sorption rate [J]. Environ Sci Technol, 1998, 32(12): 3549-3555
  • 7[6]Chiou C T, Kile D E, Rutheford D W, et al. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity [J]. Environ Sci Technol, 2000, 34(7): 1254-1258
  • 8[7]Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations [J]. Environ Sci Technol ,1998, 32(3): 338-343
  • 9[8]Wershaw R L. Model for humus in soils and sediments [J]. Environ Sci Technol, 1993, 27(5): 814--816
  • 10[9]Conte P, Piccolo A. Conformational arrangement of dissolved humic substances: influence of solution composition on association of humic molecules [J]. Environ Sci Technol, 1999, 33(10): 1682-1690

共引文献91

同被引文献141

引证文献9

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部