期刊文献+

ON CONVERGENCE OF MULTIGRID METHOD FOR NONNEGATIVE DEFINITE SYSTEMS

原文传递
导出
摘要 In this paper, we consider multigrid methods for solving symmetric nonnegative definite matrix equations. We present some interesting features of the multigrid method and prove that the method is convergent in L2 space and the convergent solution is unique for such nonnegative definite system and given initial guess.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2005年第2期177-184,共8页 计算数学(英文)
  • 相关文献

参考文献3

二级参考文献21

  • 1Zhong-ci Shi, Xue-jun Xu (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China).CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS[J].Journal of Computational Mathematics,2000,18(5):551-560. 被引量:18
  • 2黄维章.CONVERGENCE OF ALGEBRAIC MULTIGRID METHODS FOR SYMMETRIC AND POSITIVE DEFINITE MATRICES WITH WEAK DIAGONAL DOMINANCE[J].Chinese Science Bulletin,1991,36(15):1241-1242. 被引量:1
  • 3周叔子,文承标.抛物问题非协调元多重网格法[J].计算数学,1994,16(4):372-381. 被引量:10
  • 4D Braess, R Verfurth: Multigrid methods for nonconforming finite element methods, SIAM J Nuraer Anal , 27 (1990), 979-986.
  • 5J H Bramble, Multigrid Methods, Pitman, Boston, 1993.
  • 6J H Bramble, C L Goldstein, J E Pasciak, Analysis of V-cycle multigrid algorithms for forms defined by numerical quadirature, SIAM J Sci Comput, 15 (1994), 566-576.
  • 7J H Bramble, J E Pasciak, J. Xu, The analysis of multigrid algorithms with nonnested spaces and noninherited quadratic forms, Math. Comp , 56 (1991), 1-34.
  • 8J H Bramble, J E Pasciak, The analysis of smoothers for multigrid methods, Math Comp , 49(1987), 311-329.
  • 9S C Brenner, An optimal-order multigrid method for P1 nonconforming finite elements, Math Comp , 52 (1989), 1-15.
  • 10P G Ciarlet, The Finite Element Method for Elliptic Problem, North Holland, Amsterdam. 1978.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部