期刊文献+

计算机算法结合实验技术进行T细胞表位筛选

Combining computer algorithms with experimental approaches to screen T cell epitopes
下载PDF
导出
摘要 计算机算法与实验技术相结合的方法,已广泛用于各种免疫相关抗原T细胞表位的鉴定,对现在可获得的计算机预测方法,以及计算机算法与实验相结合鉴定T细胞表位的方法进行了综述,主要内容包括表位预测及抗原加工处理的预测。 The identification of T cell epitopes from immunologically relevant antigens remains a critical step in the development of vaccines. This review presents an overview of strategies that combine computer algorithms with experimental approaches for the screening of candidate epitope peptide from defined proteins. Several computer algorithms are currently being used for epitope prediction of various major histocompatibility complex (MHC) class I and II molecules, based either on the analysis of natural MHC ligands or on the binding properties of synthetic peptides. Moreover, the analysis of proteasomal digests of peptides and whole proteins has led to the development of algorithms for the prediction of proteasomal cleavages. In order to verify the generation of the predicted peptides during antigen processing in vivo as well as their immunogenic potential, several experimental approaches have been pursued in the recent past. Other strategies employ various methods for the testing of the recognition pattern towards target cells that express the antigen, and for the testing of the cytokine secreted by the activated T-cell.
作者 王虎承
出处 《重庆工商大学学报(自然科学版)》 2005年第3期237-240,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 计算机算法 实验技术 T细胞 筛选 免疫相关 预测方法 加工处理 表位预测 鉴定 抗原 T cell epitope prediction major histocompatibility complex (MHC) computer algorithm
  • 相关文献

参考文献17

  • 1ROTZSCHKE O, FALK K, STEVANOVIC S, et al. Exact prediction of a natural T cell epitope[J] . Eur. J. Immunol.1991,21:2 891 -2 894
  • 2HAMMER J, BELUNIS C, BOLIN D, et al. High -affinity binding of short peptides to major histocompatibility complex class Ⅱ molecules by anchor combinations[J]. Proc. Natl. Acad. Sci. U.S. A, 1994,91:4 456 -4 460
  • 3PARKER K C, BEDNAREK M A, COLIGAN J E. Scheme for ranking potential HLA - A2 binding peptides based on independent binding of individual peptide side - chains[J]. J. Immunol, 1994,152 : 163 - 175
  • 4RAMMENSEE H, BACHMANN J, EMMERICH N P, et al. SYFPEITHI: database for MHC ligands and peptide motifs[J].Immunogenetics, 1999,50:213 - 219
  • 5D'AMARO J, HOUBIERS J G, DRIJFHOUT J W, et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class Ⅰ peptide -binding motifs[J]. Hum. Immunol, 1995,43:13 -18
  • 6BRUSIC V , RUDY G, HONEYMAN G , et al. Prediction of MHC class Ⅱ - binding peptides using an evolutionary algorithm and artificial neural network[J]. Bioinformatics, 1998,14:121 - 130
  • 7LIM J S, KIM S, LEE H G, et al. Selection of peptides that bind to the HLA -A2.1 molecule by molecular modeling[J].Mol. Immunol, 1996,33:221 - 230
  • 8DOYTCHINOVA I, FLOWER D. The HLA- A2 -supermotif: a QSAR definition[J]. Org Biomol Chem, 2003,1 (15):2 648 - 2 654
  • 9MANICI S, STURNIOLO T, IMRO M A, et al. Melanoma cells present a MAGE -3 epitope to CD4( + ) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11[J]. J. Exp. Med, 1999,189:871 - 876
  • 10SOUTHWOOD S, SIDNEY J, KONDO A, et al. Several common HLA - DR types share largely overlapping peptide binding repertoires[J]. J. Immunol, 1998,160:3 363-3 373

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部